logo
Методическое пособие КИТ_3_Лекции

7.1 Направления использования систем искусственного интеллекта (ит).

Искусственный интеллект (ИИ) можно определить как область компьютерной науки, занимающуюся автоматизацией разумного поведения. Это определение имеет существенный недостаток, поскольку само понятие интеллекта не очень понятно и четко сформулировано. Большинство из нас увере­ны, что смогут отличить "разумное поведение", когда с ним столкнутся. Однако вряд ли кто-нибудь сможет дать интеллекту определение, достаточно конкретное для оценки предположительно разумной компьютерной программы и одновременно отражающее жизнеспособность и сложность человеческого разума.

Как и большая часть наук, ИИ разбивается на множество поддисциплин, которые, разделяя основной подход к решению проблем, нашли себе различные применения. Рассмотрим некоторые из основных сфер применения этих отраслей и их вклад в искусственный интеллект вообще.

1 Ведение игр. Игры могут порождать необычайно большие пространства состояний. Для поиска в них требуются мощные методики, определяющие, какие альтернативы следует рассматривать. Такие методики называются эвристиками и составляют значительную область исследований ИИ. Эвристика- стратегия полезная, но потенциально способная упус­тить правильное решение. Примером эвристики может быть рекомендация проверять, включен ли прибор в розетку, прежде чем делать предположения о его поломке, или вы­полнять рокировку в шахматной игре, чтобы попытаться уберечь короля от шаха. Боль­шая часть того, что мы называем разумностью, по-видимому, опирается на эвристики, которые люди используют в решении задач.

2 Автоматические рассуждения и доказательство теорем

Благодаря исследованиям в области доказательства теорем были формализованы алгоритмы поиска и разработаны языки формальных представлений, такие как исчисление предика­тов и логический язык программирования PROLOG. Привлекательность автоматического доказательства теорем основана на строгости и общности логики. В формальной системе логика располагает к автоматизации. Разнообразные проблемы можно попытаться решить, представив описание задачи и существенную относя­щуюся к ней информацию в виде логических аксиом и рассматривая различные случаи задачи как теоремы, которые нужно доказать. Этот принцип лежит в основе автоматического доказа­тельства теорем и систем математических обоснований

3 Экспертные системы

Одним из главных достижений ранних исследований по ИИ стало осознание важности специфичного для предметной области (domain-specific) знания. Врач, к примеру, хорошо диагностирует болезни не потому, что он располагает некими врожденными общими способно­стями к решению задач, а потому, что многое знает о медицине. Точно так же геолог эффек­тивно находит залежи ископаемых, потому что он способен применить богатые теоретиче­ские и практические знания о геологии к текущей проблеме. Экспертное знание- это сочетание теоретического понимания проблемы и набора эвристических правил для ее решения, которые, как показывает опыт, эффективны в данной предметной области. Экспертные системы создаются с помощью заимствования знаний у человеческого эксперта и кодирова­ния их в форму, которую компьютер может применить к аналогичным проблемам. Стратегии экспертных систем основаны на знаниях человека-эксперта. Хотя многие программы пишутся самими носителями знаний о предметной области, большинство экспертных систем являются плодом сотрудничества между таким экспертом, как врач, химик, геолог или инженер, и независимым специалистом по ИИ. Эксперт предоставляет необходимые знания о предметной области, описывая свои методы принятия решений и демонстрируя эти навыки на тщательно отобранных примерах. Специалист по ИИ, или инженер по знаниям (knowledge engineer), как часто называют разработчиков экспертных систем, отвечает за реализацию это­го знания в программе, которая должна работать эффективно и внешне разумно. Экспертные способности программы проверяют, давая ей решать пробные задачи. Эксперт подвергает критике поведение программы, и в ее базу знаний вносятся необходимые изменения. Процесс повторяется, пока программа не достигнет требуемого уровня работоспособности.

4 Нейронные сети

Нейронные сети возникли из исследований в области искусственного интеллекта, а именно, из попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга. Основной областью исследований по искусственному интеллекту в 60-е - 80-е годы были экспертные системы. Такие системы основывались на высокоуровневом моделировании процесса мышления (в частности, на представлении, что процесс нашего мышления построен на манипуляциях с символами). Скоро стало ясно, что подобные системы, хотя и могут принести пользу в некоторых областях, не ухватывают некоторые ключевые аспекты человеческого интеллекта. Согласно одной из точек зрения, причина этого состоит в том, что они не в состоянии воспроизвести структуру мозга. Чтобы создать искусственный интеллект, необходимо построить систему с похожей архитектурой.

5 Понимание естественных языков и семантическое моделирование

Одной из долгосрочных целей искусственного интеллекта является создание программ, способных понимать человеческий язык и строить фразы на нем. Способность применять и понимать естественный язык является фундаментальным аспектом челове­ческого интеллекта, а его успешная автоматизация привела бы к неизмеримой эффектив­ности самих компьютеров. Многие усилия были затрачены на написание программ, по­нимающих естественный язык. Хотя такие программы и достигли успеха в ограниченных контекстах, системы, использующие натуральные языки с гибкостью и общностью, ха­рактерной для человеческой речи, лежат за пределами сегодняшних методологий.

Понимание естественного языка включает куда больше, чем разбор предложений на индивидуальные части речи и поиск значений слов в словаре. Оно базируется на обширном фоновом знании о предмете беседы и идиомах, используемых в этой области, так же, как и на способности применять общее контекстуальное знание для понимания не­домолвок и неясностей, присущих естественной человеческой речи.

6 Планирование и робототехника

Исследования в области планирования начались с попытки сконструировать роботов, которые бы выполняли свои задачи с некоторой степенью гибкости и способностью реагировать на окружающий мир. Планирование предполагает, что робот должен уметь вы­полнять некоторые элементарные действия. Он пытается найти последовательность та­ких действий, с помощью которой можно выполнить более сложную задачу, например, двигаться по комнате, заполненной препятствиями.

7 Машинное обучение

Обучение остается "крепким орешком" искусственного интеллекта. Важность обучения, тем не менее, несомненна, поскольку эта способность является одной из главных составляющих разумного поведения. Экспертная система может выполнять долгие и трудоемкие вычисления для решения проблем. Но, в отличие от человеческих существ, если дать ей такую же или подобную проблему второй раз, она не "вспомнит" решение. Она каждый раз вновь будет выполнять те же вычисления - едва ли это похоже на ра­зумное поведение. Хотя обучение является трудной областью, существуют некоторые программы, которые опровергают опасения о ее неприступности. Одной из таких программ является AM - Автоматизированный Математик, разработанный для открытия математических законов [Lenat, 1977, 1982]. Отталкиваясь от заложенных в него понятий и аксиом тео­рии множеств, Математику удалось вывести из них такие важные математические кон­цепции, как мощность множества, целочисленная арифметика и многие результаты тео­рии чисел. AM строил теоремы, модифицируя свою базу знаний, и использовал эвристи­ческие методы для поиска наилучших из множества возможных альтернативных теорем. Из недавних результатов можно отметить программу Коттона [Cotton и др., 2000], кото­рая изобретает "интересные" целочисленные последовательности.