Устойчивость точек равновесия
Как мы уже видели из примера, различные по своему типу стационарные точки характеризуются различным расположением фазовых траекторий в достаточно малой окрестности этих точек. Вместе с тем существует еще одна характеристика - устойчивость точки равновесия, которая позволяет получить дополнительную информацию о поведении фазовых траекторий в окрестности неподвижных точек.
Состояние равновесия физической системы соответствует стационарной точке на фазовой плоскости. Малые возмущения неустойчивой точки равновесия приводят к большим отклонениям от этой точки; в случае же устойчивой точки равновесия малые возмущения приводят к малым отклонениям. Отправляясь от таких наглядных интуитивных соображений, рассмотрим неподвижную точку системы . Можно показать, что локальный фазовый портрет в окрестностях произвольной неподвижной точки принадлежит одному из трех типов:асимптотически устойчивому, нейтрально устойчивому или неустойчивому.
Будем говорить, что особая точка устойчива,если для любой ее окрестностиN радиусомсуществует окрестность n меньшего радиуса () такая, что любая фазовая траектория, выходящая в начальный момент временииз точки, лежащей в окрестности n, при всех, не выйдет за пределы окрестностиN. Не придерживаясь строгой формулировки, можно сказать, что точка покоя является устойчивой, если все фазовые траектории, которые в начальный момент времени находятся вблизи особой точки, с течением времени также остаются вблизи этой точки.
Далее, особая точка называется асимптотически устойчивой, если она устойчива и если существует окрестностьNэтой точки такая, что каждая траектория, которая в момент временинаходится в этой окрестности, пристремится к точке покоя.
Наконец, если особая точка не является устойчивой, то ее называют неустойчивой.
Пример асимптотически устойчивой и неустойчивой стационарных точек дает рис.3.4,a, где показано поведение фазовых траекторий в случае колебаний маятника в среде с трением, стационарные точки имеющие координаты (2m,0),гдеm=0,1,2...,являются асимптотически устойчивыми, а стационарные точки с координатами(n,0),гдеn=0,1,2...,- неустойчивыми.
Неподвижная точка x*системы, которая устойчива, но не асимптотически устойчива, называетсянейтрально устойчивой.
Из рассмотренных примеров, таким свойством обладают стационарные точки (2m,0), где m=0,1,2,.., консервативной механической системы, фазовый портрет которой приведен на рис.3.3.
Введенное понятие устойчивости точки равновесия является понятием чисто качественным, так как ни о каких свойствах, касающихся характера поведения фазовых траекторий, здесь не говорится. Что же касается понятия асимптотической устойчивости, то по сравнению с понятием простой устойчивости здесь дополнительно требуется, чтобы любая фазовая траектория с течением времени стремилась к точке покоя. Однако и в этом случае никаких условий на характер приближения к этой точке также не накладывается.
- Оглавление
- 1. Модели и системы 9
- 2. Технология моделирования 20
- 3. Непрерывные детерминированные модели 36
- 4. Модели массового обслуживания 66
- 5. Дискретные модели 98
- Предисловие
- Модели и системы
- Физические и математические модели
- Моделирование: системный подход
- Общая модель функционирования
- Технология моделирования Построение моделей
- Содержательное описание системы
- Концептуальное моделирование
- Построение математических моделей
- Истинность моделей
- Непрерывные детерминированные модели Непрерывные модели динамических систем
- Задачи анализа непрерывных систем
- Основные определения
- Построение фазовых портретов
- Устойчивость точек равновесия
- Линейные системы
- Стационарное решение
- Общее решение
- Двумерные канонические системы
- Простые канонические системы
- Фазовые портреты простых канонических систем
- Фазовый портрет простой линейной системы
- Качественная эквивалентность
- Непростые канонические системы
- Нелинейные системы Глобальные и локальные фазовые портреты
- Линеаризация нелинейных систем
- Предельные циклы
- Модели массового обслуживания Основные понятия. Терминология
- Потоки событий
- Пуассоновский поток событий
- Распределение событий на малом интервале времени
- Распределение событий в пуассоновском потоке
- Распределение интервалов между событиями
- Законы обслуживания
- Марковские смо
- Марковские цепи
- Матрица перехода для пуассоновского потока заявок
- Одноканальная смо с ожиданием
- Многоканальная смо с ожиданием
- Смо с отказами
- Многоканальные смо с взаимопомощью
- Замкнутые системы
- Дискретные модели Конечные автоматы
- Вероятностные автоматы
- Сети Петри
- Ординарные сети Петри
- Библиографический список