Сущность имитационного моделирования
Особым видом моделей являются имитационные модели. Имитационное моделирование проводится в тех случаях, когда исследователь имеет дело с такими математическими моделями, которые не позволяют заранее вычислить или предсказать результат. В этом случае для предсказания поведения реальной сложной системы необходим эксперимент, имитация на модели при заданных исходных параметрах. Имитация представляет собой численный метод проведения на ЭВМ экспериментов с математическими моделями, описывающими поведение сложной системы в течение заданного или формируемого периода времени. Поведение компонентов сложной системы и их взаимодействие в имитационной модели чаще всего описывается набором алгоритмов, реализуемых на некотором языке моделирования. Термин «имитационная модель» используют в том случае, когда речь идет о проведении численных расчетов и в частности о получении статистической выборки на математической модели, например, для оценки вероятностных характеристик некоторых выходных параметров. Моделирование на системном уровне применяется в системном анализе для проведения расчетов характеристик будущей системы. При построении имитационной модели исследователя, прежде всего, интересует возможность вычисления некоторого функционала, заданного на множестве реализаций процесса функционирования изучаемой системы. Наиболее важным для исследователя функционалом является показатель эффективности системы. Имитируя различные реальные ситуации на модели, исследователь получает возможность решения таких задач как оценка эффективности тех или иных принципов управления системой, сравнение вариантов структурных схем, определение степени влияния изменений параметров системы и начальных условий на показатель эффективности
системы. Примерами расчетов на имитационных моделях также могут служить вычисления характеристик производительности, надежности, качества функционирования и т.п., которые необходимо определить как функции внутренних и внешних параметров системы.
Ответственный этап создания имитационной модели представляет собой этап составления формального описания объекта моделирования сложной системы. Цель этапа - получение исследователем формального представления алгоритмов поведения компонентов сложной системы и отражение вопросов взаимодействия между собой этих компонентов. При составлении формального описания модели исследователь использует тот или иной язык формализации. В зависимости от сложности объекта моделирования и внешней среды могут использоваться три вида формализации: аппроксимация явлений функциональными зависимостями, алгоритмическое описание происходящих в системе процессов, комбинированное представление в виде формул и алгоритмических записей.
Сложность системы и вероятностный характер процессов, происходящих в объекте исследования, свидетельствуют о том, что для определения выходных характеристик системы необходимо использовать стохастические модели. Вероятностный характер процессов, происходящих в сложных системах, приводит к невозможности аппроксимации явлений функциональными зависимостями. Доминирующим методом при моделировании сложных систем является способ алгоритмического описания происходящих в системе процессов.
Отметим еще одну особенность, которую необходимо учитывать при моделировании процесса функционирования сложной системы. В социотехнических системах люди решают часть задач из общей последовательности задач, решаемых системой, например, задачи управления, принятия решения и т.п. Следовательно, они принципиально не устранимы из системы и должны быть представлены в модели системы как ее элементы. Однако учет так называемого «человеческого фактора» имеет принципиальные сложности. При выполнении человеком производственных операций требуется учитывать квалификацию конкретного исполнителя, его опыт и стаж работы. Необходимо также иметь в виду, что на качество выполняемых процедур могут оказывать влияние состояние его здоровья, эмоционально-психологический настрой и прочие факторы, которые практически не удается формализовать при составлении модели. Поэтому в моделях принимают определенного рода допущения, приводящие к упрощению модели, к решению задачи «в среднем», т.е. задают некоторые средние характеристики выполнения человеком своих функций и при данных значениях проводят расчеты
- Введение
- Глава I определениясистемного анализа
- Системность - общее свойство материи
- Определения системного анализа
- Понятие сложной системы
- Характеристика задач системного анализа
- Особенности задач системного анализа
- Глава 2 характеристика этапов системного анализа
- Процедуры системного анализа
- Анализ структуры системы
- Построение моделей систем
- Исследование ресурсных возможностей
- Определение целей системного анализа
- Формирование критериев
- Генерирование альтернатив
- Реализация выбора и принятия решений
- Внедрение результатов анализа
- Глава 3 построение моделей систем
- Понятие модели системы
- Агрегирование - метод обобщения моделей
- Глава 4 имитационное моделирование - метод проведения системных исследований
- Сущность имитационного моделирования
- Композиция дискретных систем
- Содержательное описание сложной системы
- Глава 5 теория подобия - методология обоснования применения моделей
- Модели и виды подобия
- Основные понятия физического подобия
- Элементы статистической теории подобия
- Глава 6 эксперимент - средство построения модели
- Характеристика эксперимента
- Обработка экспериментальных данных
- Глава 7 параметрические методы обработки экспериментальной информации
- 7.1. Оценивание показателей систем и определениеихточности
- 7.2. Использование метода максимального правдоподобия для оценивания параметров законов распределения
- Глава I определения системного анализа 7
- Глава 2 33
- Глава 3 построение моделей систем 53
- Глава I определения системного анализа 7
- Глава 2 33
- Глава 3 построение моделей систем 53
- 7.5. Примеры оценки показателей законов распределения
- Глава 8
- Глава I определения системного анализа 7
- Глава 2 33
- Глава 3 построение моделей систем 53
- Формулировка теоремы Байеса для событий
- Глава I определения системного анализа 7
- Глава 2 33
- Глава 3 построение моделей систем 53
- 8.3. Вычисление апостериорной плотности при последовательном накоплении информации
- Достаточные статистики
- Сопряженные распределения
- 8.9. Оценивание параметров семейства гамма-распределений
- Глава I определения системного анализа 7
- Глава 2 33
- Глава 3 построение моделей систем 53
- Глава 9
- Общие замечания
- Ядерная оценка плотности
- Глава 10
- Задача линейного программирования
- Глава I определения системного анализа 7
- Глава 2 33
- Глава 3 построение моделей систем 53
- Метод искусственных переменных
- Дискретное программирование
- Нелинейное программирование
- Глава 11 системный анализ и модели теории массового обслуживания
- Глава I определения системного анализа 7
- Глава 2 33
- Глава 3 построение моделей систем 53
- Замкнутые системы с ожиданием
- 11.5. Пример расчета надежности системы с ограниченным количеством запасных элементов
- Глава 12 численные методы в системном анализе
- Метод последовательных приближений
- Глава I определения системного анализа 7
- Глава 2 33
- Глава 3 построение моделей систем 53
- Глава 13 выбор или принятие решений
- Глава I определения системного анализа 7
- Глава 2 33
- Глава 3 построение моделей систем 53