1. Аутентификация на основе многоразовых паролей
Базовый принцип «единого входа» предполагает достаточность одноразового прохождения пользователем процедуры аутентификации для доступа ко всем сетевым ресурсам. Поэтому в современных операционных системах предусматривается централизованная служба аутентификации, которая выполняется одним из серверов сети и использует для своей работы базу данных, где хранятся учетные записи пользователей сети. В эти учетные данные наряду с другой информацией включены идентификаторы и пароли пользователей.
Процедуру простой аутентификации пользователя в сети можно представить следующим образом. При попытке логического входа в сеть пользователь набирает на клавиатуре компьютера свои идентификатор и пароль. Эти данные поступают для обработки на сервер аутентификации. В базе данных, хранящейся на сервере аутентификации, по идентификатору пользователя находится соответствующая запись; из нее извлекается пароль и сравнивается с тем паролем, который ввел пользователь. Если они совпали, то аутентификация прошла успешно, пользователь получает легальный статус и те права на ресурсы сети, которые определены для его статуса системой авторизации.
В схеме простой аутентификации передача пароля и идентификатора пользователя может производиться следующими способами
• в незашифрованном виде. Например, согласно протоколу парольной аутентификации РАР (Password Authentication Protocol) пароли передаются по линии связи в открытой незащищенной форме; • в защищенном виде. Все передаваемые данные (идентификатор и пароль пользователя, случайное число и метки времени) защищены посредством шифрования или однонаправленной функции.
Схема простой аутентификации с использованием пароля показана на рис. 7.1. Вариант аутентификации с передачей пароля пользователя в незашифрованном виде не гарантирует даже минимального уровня безопасности, так как процесс подвержен многочисленным атакам и легко компрометируется. Чтобы защитить пароль, его нужно зашифровать перед пересылкой по незащищенному каналу. Для этого в схему включены средства шифрования Ек и расшифрования Dk, управляемые разделяемым секретным ключом К. Проверка подлинности пользователя основана на сравнении присланного пользователем пароля PA и исходного значения РА’ хранящегося в сервере аутентификации. Если значения PA и РА’ совпадают, то пароль PA считается подлинным, а пользователь А — законным.
Схемы организации простой аутентификации различаются не только методами передачи паролей, но и видами их хранения и проверки. Наиболее распространенный способ — хранение паролей пользователей в открытом виде в системных файлах, причем на эти файлы устанавливаются атрибуты защиты от чтения и записи (например, при помощи описания соответствующих привилегий в списках контроля доступа операционной Системы). Система сопоставляет введенный пользователем пароль с хранящейся в файле паролей записью. В этом случае не используются криптографические механизмы, такие как шифрование или однонаправленные функции. Недостатком данного способа является возможность получения злоумышленником в системе привилегий администратора, включая права доступа к системным файлам, и в частности, к файлу паролей.
С точки зрения безопасности более предпочтителен метод передачи и хранения паролей с использованием односторонних функций. Его суть заключается в том, что пользователь должен пересылать вместо открытой формы пароля его отображение, получаемое с использованием односторонней функции h (.). Это преобразование гарантирует невозможность раскрытия противником пароля по его отображению, так как противник наталкивается на неразрешимую числовую задачу.
Например, односторонняя функция h (.) может быть определена следующим образом:
, где Р — пароль пользователя;
ID — идентификатор пользователя;
Ер — процедура шифрования, выполняемая с использованием пароля Р в качестве ключа.
Такие функции удобны, если длина пароля и ключа одинаковы. В этом случае проверка подлинности пользователя А с помощью пароля РА состоит из пересылки серверу аутентификации отображения h (РА) и сравнения его с предварительно вычисленным и хранимым в базе данных сервера аутентификации эквивалентом h’ (РА). Если отображения h (РА) и h’ (РА) равны, то считается, что пользователь успешно прошел аутентификацию.
На практике пароли состоят лишь из нескольких символов— так пользователям легче запомнить их. Короткие пароли уязвимы к атаке полного перебора всех вариантов. для того чтобы предотвратить подобную атаку, функцию h (Р) можно определить иначе, например в виде:
h (P)= E рек (ID),
где К и ID — соответственно ключ и идентификатор отправителя.
Различают две формы представления объектов, аутентифицирующих пользователя: • внешний аутентифицирующий объект, не принадлежащий системе;
• внутренний объект, принадлежащий системе, в который переносится информация из внешнего объекта.
Внешние объекты могут быть представлены на различных носителях информации — пластиковых картах, смарт-картах, гибких магнитных дисках и т.п. Внешняя и внутренняя формы представления аутентифицирующего объекта должны быть семантически тождественны.
Допустим, что в компьютерной системе зарегистрировано n пользователей. Пусть i-й аутентифицирующий объект i-го пользователя содержит два информационных поля:
IDi —. неизменный идентификатор i-го пользователя, который является аналогом имени и используется для идентификации пользователя;
Кi — аутентифицирующая информация пользователя, которая может изменяться и используется для аутентификации (например, пароль Рi = Кi ).
Описанная структура соответствует практически любому Ключевому носителю информации, используемому для опознания пользователя. Например, для носителей типа пластиковых карт выделяются неизменяемая информация IDi, первичной персонализации пользователя и объект в файловой структуре Карты, содержащий Кi.
Совокупную информацию в ключевом носителе можно назвать первичной аутентифицирующей информацией i-го пользователя. Очевидно, что внутренний аутентифицирующий объект не должен существовать в системе длительное время (больше времени работы конкретного пользователя). Для длительного хранения следует использовать данные в защищенной форме.
Системы простой аутентификации на основе многоразовых паролей имеют пониженную стойкость, поскольку в них выбор аутентифицирующей информации происходит из относительно небольшого множества осмысленных слов.
- Министерство образования и науки российской федерации
- Лекция 1
- Предмет и задачи программно-аппаратной защиты информации.
- Лекция 2
- Информационная безопасность
- В компьютерных системах
- Компьютерная система как объект защиты информации
- Понятие угрозы информационной безопасности в кс
- Классификация и общий анализ угроз информационной безопасности в кс
- Лекция 3 Случайные угрозы информационной безопасности
- Лекция 4 понятие политики безопасности в компьютерных системах
- 1. Разработка политики информационной безопасности
- 2. Методология политики безопасности компьютерных систем
- 3. Основные положения политики информационной безопасности
- 4. Жизненный цикл политики безопасности
- 5. Принципы политики безопасности
- Лекция 5 Идентификации субъекта. Понятие протокола идентификации. Идентифицирующая информация. Пароли. Программно-аппаратные средства идентификации и аутентификации пользователей
- Идентификация и аутентификация. Основные понятия и классификация
- Лекция 6 Простая аутентификация
- 1. Аутентификация на основе многоразовых паролей
- 2. Аутентификация на основе одноразовых паролей
- 3. Аутентификация, на основе сертификатов
- Лекция 7
- 2. Строгая аутентификация
- 2.1. Протоколы аутентификации с симметричными алгоритмами шифрования
- 2.2. Протоколы, основанные на использовании однонаправленных ключевых хэш-функций
- Лекция 8 Аутентификация с использованием асимметричных алгоритмов шифрования
- Электронная цифровая подпись (эцп). Аутентификация, основанная на использовании цифровой подписи
- Протоколы аутентификации с нулевой передачей значений
- Упрощенная схема аутентификации с нулевой передачей знаний
- Лекция 9 системы идентификации и аутентификации
- Классификация систем идентификации и аутентификации
- Комбинированные системы
- Лекция 10 Бесконтактные смарт-карты и usb-ключи
- Гибридные смарт-карты
- Биоэлектронные системы
- 1. Ключи. Организация хранения ключей
- Утверждение о подмене эталона
- Защита баз данных аутентификации операционных систем класса Windows nt.
- Алгоритм вычисления хэша lanman
- Хэш ntlm
- 2. Распределение ключей
- Лекция 12 Использование комбинированной криптосистемы
- Метод распределения ключей Диффи-Хеллмана
- Протокол вычисления ключа парной связи ескер
- Лекция 13 Основные подходы к защите данных от нсд. Защита пэвм от несанкционированного доступа
- 1) Физическая защита пэвм и носителей информации;
- 1. Полностью контролируемые компьютерные системы.
- Программная реализация функций кс.
- Аппаратная реализация функций кс.
- 2. Частично контролируемые компьютерные системы.
- Основные элементы и средства защиты от несанкционированного доступа. "Снег-2.0"
- Лекция 15 Устройства криптографической защиты данных серии криптон.
- Устройства для работы со смарт-картами.
- Лекция 16 Программные эмуляторы функций шифрования устройств криптон
- Системы защиты информации от несанкционированного доступа Система криптографической защиты информации от нсд криптон –вето
- Лекция 17 Комплекс криптон -замок для ограничения доступа компьютеру.
- Система защиты конфиденциальной информации Secret Disk.
- Система защиты данных Crypton Sigma.
- Лекция 18 Модель компьютерной системы. Методы и средства ограничения доступа к компонентам эвм. Понятие изолированной программной среды.
- 1. Понятие доступа и монитора безопасности
- 2. Обеспечение гарантий выполнения политики безопасности
- 3. Методология проектирования гарантированно защищенных кс
- Лекция 19 Метод генерации изолированной программной среды
- Лекция 20
- Модели управления доступом
- Системы разграничения доступа
- Диспетчер доступа
- Списки управления доступом к объекту
- Списки полномочий субъектов
- Атрибутные схемы
- Лекция 21
- 1. Подходы к защите информационных систем Устойчивость к прямому копированию
- Устойчивость к взлому
- Аппаратные ключи
- 2. Структура системы защиты от несанкционированного копирования
- Блок установки характеристик среды
- 3. Защита дискет от копирования
- Лекция 22 Электронные ключи hasp
- Лекция 23
- 1. Разрешения для файлов и папок
- 2. Шифрующая файловая система (efs)
- 2.1. Технология шифрования
- 2.2. Восстановление данных
- Лекция 24
- 1. Драйвер еfs
- 2. Библиотека времени выполнения efs (fsrtl)
- 4. Win32 api
- 11.4. Взаимодействие файловой системы защиты ntfs и защиты ресурса общего доступа (Sharing)
- 11.5. Типовые задачи администрирования
- Оснастка Локальные пользователи и группы (Local Users and Groups)
- 11.6. Администрирование дисков в Windows 2000
- Лекция 25
- 2. Обзор современных средств защиты
- Лекция 26 Защита файлов от изменения. Защита программ от изучения. Защита от дизассемблирования. Защита от отладки. Защита от трассировки по прерываниям. Защита от исследований.
- Обычные проблемы хакера
- Защита от исследований на уровне текстов
- Защита от исследований в режиме отладки.
- Защита программ от трассировки
- Лекция 27
- 1. Базовые методы нейтрализации систем защиты от несанкционированного использования
- 2. Понятие и средства обратного проектирования
- Лекция 28 Локализация кода модуля защиты посредством отлова WinApi функций в режиме отладки
- Базовые методы противодействия отладчикам
- Лекция 29 Базовые методы противодействия дизассемблированию по
- Защита от отладки, основанная на особенностях конвейеризации процессора
- Лекция 30 Использование недокументированных инструкций и недокументированных возможностей процессора
- Шифрование кода программы как универсальный метод противодействия отладке и дизассемблированию
- Основные модели работы рпв
- Компьютерные вирусы.
- Классификация вирусов
- Лекция 32 Механизмы заражения компьютерными вирусами
- Признаки появления вирусов
- Методы и средства защиты от компьютерных вирусов
- Лекция 33
- Ibm antivirus/dos
- Viruscan/clean-up
- Panda Antivirus
- Профилактика заражения вирусами компьютерных систем
- Антивирус. Алгоритм работы
- Проверочные механизмы
- Постоянная проверка и проверка по требованию
- Лекция 34 Структура антивирусной защиты предприятия
- Функциональные требования
- Общие требования
- Пример вируса
- Список литературы Основная литература
- Дополнительная литература
- Периодические издания
- Методические указания к лабораторным занятиям
- Методические указания к практическим занятиям
- Методические указания к курсовому проектированию и другим видам самостоятельной работы