Криптографические методы защиты информации
Термин «криптография» вначале означал «спрятать, скрыть то, что написано». Впервые он упоминается во времена появления письменности. В настоящее время под криптографией понимается сокрытие смысла информации, представленной в любой форме: в виде данных, хранящихся на диске, или сообщений, передаваемых по информационным сетям. Ее можно применить также к программному обеспечению, графике или речи – всему, что может быть закодировано цифрами. Криптография имеет более широкое применение, чем только обеспечение секретности. Методы, которые используются в криптографии, могут быть использованы для методов, связанных с защитой информации.
Известны различные подходы к классификации методов криптографического преобразования информации. По виду воздействия на исходную информацию методы криптографического преобразования информации могут быть разделены на четыре группы:
шифрование;
стеганография;
кодирование;
сжатие.
Цель криптографической системы заключается в том, чтобы любой ее пользователь – отправитель некоторого сообщения – с помощью заранее известной ему вполне определенной информации имел возможность зашифровать (осмысленный) исходный текст (также называемый открытым текстом) сообщения, отправляемого другому пользователю системы – получателю этого сообщения, получив в результате совершенно бессмысленный на взгляд шифрованный текст, или, коротко, шифртекст (называемый также криптограммой). Получатель, которому предназначен данный шифртекст, должен обладать, вообще говоря, другой, вполне определенной секретной информацией для того, чтобы быть способным с ее помощью расшифровать (говорят, также, дешифровать) полученный шифртекст, восстановив, таким образом, соответствующий ему открытый текст. При этом нарушитель, или противник (называемый также криптоаналитиком или злоумышленником), которому секретная информация для дешифрования неизвестна, должен быть неспособен эффективно определить, или, как говорят, раскрыть, исходный текст. Необходимо отметить, что при попытке раскрытия шифртекста соответствующий ему исходный текст ищется в принципе без знания секретной информации для его дешифрования. Именно в этом и заключается отличие дешифрования от раскрытия. Степень неспособности криптосистемы к раскрытию называется ее стойкостью.
Криптографическую систему называют криптосистемой общего использования, если ее стойкость основывается не на секретности алгоритмов шифрования и дешифрования, а на секретности некоторого сравнительно короткого значения, которое называется ключом этой криптосистемы. Такие ключи должны легко вырабатываться конкретными пользователями при помощи их собственных ключей таким образом, чтобы при этом даже разработчик криптосистемы не мог ее раскрыть при условии, что у него нет доступа к тем ключам, которые в ней действительно используются.
Одним из очевидных требований обеспечения стойкости общей криптографической системы является огромное количество возможных ключей, которое не позволяет провести исчерпывающий поиск (когда осуществляется попытка систематического дешифрования заданного шифртекста, используя при этом каждый из возможных ключей до тех пор, пока не получится некий осмысленный открытый текст).
Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании.
В настоящее время существует два типа криптографических алгоритмов: классические, или симметричные алгоритмы, основанные на использовании закрытых, секретных ключей, когда и зашифрование, и расшифрование производятся на одном и том же ключе, и алгоритмы с открытым ключом, в которых используются один открытый и один закрытый ключ, т.е. эти криптооперации производятся на разных ключах (эти алгоритмы называются также асимметричными).
Криптография обеспечивает конфиденциальность информации, защищая ее от несанкционированного доступа со стороны тех лиц, кому это не разрешено. Например, при пересылке платежных счетов через сеть электронной почтой наибольший риск состоит в том, что счета могут быть изменены или включены поддельные записи, риск же прочтения самого счета менее существен. В этом случае необходимо обеспечить целостность сообщения. На практике нельзя с абсолютной надежностью предотвратить вторжение в вычислительную сеть, но сам факт вторжения может быть обнаружен достоверно. Этот процесс проверки целостности сообщения часто называется установлением подлинности сообщения. Те же методы, которые используются в криптографии, могут быть с небольшими изменениями применены к установлению подлинности сообщений. Аналогично может быть обеспечена целостность данных, а также программ, хранящихся в памяти.
Наиболее универсальной процедурой является обмен паролями. Это весьма примитивная процедура, так как лицо, которому оказался доступным пароль, может воспользоваться им. Если соблюдать меры предосторожности, можно повысить эффективность паролей, защитив их криптографическими методами. В то же время криптография дает и более мощные процедуры, которые позволяют непрерывно изменять пароли.
Одно из последних достижений в области криптографии – цифровая сигнатура – способ обеспечения целостности с помощью дополнения сообщения специальным свойством, которое может быть проверено только тогда, когда известен открытый ключ, присвоенный автору сообщения. Данный метод имеет значительные преимущества перед наиболее известными методами проверки целостности сообщения с помощью секретных ключей.
Представляет интерес обеспечение защиты информации при организации игр с использованием сетей связи, чтобы исключить возможный обман. Другой пример – расплата по контрактам между не доверяющими друг другу партнерами. Что касается программных средств, то здесь криптографические методы используются для обеспечения конфиденциальности, проверке целостности и установления подлинности данных.
Чтобы скрыть смысл передаваемых сообщений применяются два типа преобразований: кодирование и шифрование. Коды и шифры использовались задолго до появления ЭВМ. С теоретической точки зрения не существует четкого различия между кодами и шифрами.
Однако в современной практике различие между ними, как правило, является достаточно четким. Коды оперируют лингвистическими элементами, разделяя шифруемый текст на такие смысловые элементы, как слова и слоги. В шифре всегда различают два элемента: алгоритм и ключ. Для кодирования используются кодировочные книги или таблицы, содержащие наборы наиболее часто используемых фраз. Каждой из этих фраз соответствует произвольно выбранное кодовое слово, которое чаще всего задается набором цифр. Для декодирования сообщения имеется такая же книга или таблица. Кодировочная книга или таблица дает пример произвольного криптографического преобразования. Способ имеет ряд недостатков, главным из которых является следующий: если этой книгой однажды несанкционированно воспользовались, то нужно создавать новую книгу кодов и распространять ее среди всех пользователей системы.
Второй тип криптографического преобразования – шифрование – представляет собой процедуру (алгоритм) преобразования символов исходного текста в форму, недоступную для распознавания (зашифрованный текст). Этот тип преобразования соответствует информационной технологии. Существенное значение здесь приобретает защита процедуры (алгоритма). Применяя криптографический ключ, можно снизить требования к процедуре шифрования. Теперь защите подлежит только ключ. Если ключ оказался скопированным, его можно заменить, и это проще, чем замена кодировочных книг или таблиц. Поэтому шифрование, а не кодирование широко используется в информационной технологии.
Защита данных с помощью шифрования – одно из возможных решений проблемы их безопасности. Зашифрованные данные становятся доступными только для того, кто знает как их расшифровать, и поэтому похищение зашифрованных данных абсолютно бессмысленно для несанкционированных пользователей.
- Институт туризма и гостеприимства
- А. К. Антонов, о. В. Пузырева
- Часть 2
- Оглавление
- Лекция 14 компьютерные сети. Составляющие компьютерных сетей
- Классификация сетей
- Сетевое программное обеспечение
- Локальные компьютерные сети. Преимущества работы в ней
- Топология сети
- Сеть моноканальной топологии
- Сеть кольцевой топологии
- Сеть звездообразной топологии
- Программное обеспечение локальной сети
- Сетевые операционные системы
- Доступ пользователей к ресурсам сети
- Служба каталогов NetWare
- Именование объектов nds
- Печать в сети
- Контрольные вопросы к лекции 14
- Лекция 15 глобальные компьютерные сети
- Глобальные компьютерные сети в финансово-экономической деятельности
- Российские сети информационных и финансовых телекоммуникаций (обзор)
- Банковские сети и системы межбанковских расчетов
- Внутригосударственные межбанковские системы различных стран
- Международные сети межбанковских сообщений
- Компьютерные сети для проведения операций с ценными бумагами
- Структура глобальной сети
- Структура Интернет
- Принципы работы глобальной сети Архитектура сети
- В прикладной уровень прикладной уровень иртуальное соединение
- Физическое соединение
- Маршрутизация
- Адресация в Интернет
- Доменная система имен
- Управление передачей в Интернет
- Протокол tcp/ip
- Подключение индивидуального компьютера
- Услуги Интернет
- Электронная почта
- Общие принципы работы системы электронной почты
- Структура почтового сообщения
- Передача файлов
- Получение услуг сети через удаленный компьютер
- Телеконференции
- Интерактивное общение пользователей на естественном языке
- Служба World Wide Web (www)
- Вид_информационного_ресурса://доменное_имя_хост-компьютера/имя_каталога/имя_подкаталога/имя_файла
- Поиск информации в Интернет
- Обработка нужных документов
- Подключение к Интернет. Основные понятия
- Установка модема
- Подключение к компьютеру поставщика услуг Интернет
- Контрольные вопросы к лекции 15
- Лекция 16 Информационная безопасность. Каналы утечки информации. Анализ возможных каналов утечки информации
- 2.1. Случайные угрозы
- Преднамеренные умышленные угрозы
- Традиционный шпионаж и диверсии
- Несанкционированный доступ к информации
- Электромагнитные излучения и наводки
- Несанкционированная модификация структур
- Вредительские программы
- Неформальная модель нарушителя
- Компьютерные преступления
- Компьютерное пиратство. Хакеры
- Категории пиратов
- Обходной путь
- Логические бомбы
- Троянский конь
- Экранный имитатор
- Вирусные программы
- Обнаружение несанкционированного доступа
- Предупреждение преступлений
- Контрольные вопросы к лекции 16
- Лекция 17 Системы защиты информации (сзи). Компоненты (сзи) Структура информационной системы
- 4. Средства хранения и обработки информации:
- 5. Средства передачи информации:
- Защищенная ис и система защиты информации
- Компоненты системы защиты информации
- 1. Защита информации от утечки по техническим каналам:
- 2. Безопасность информационных технологий:
- 3. Организационно-режимные мероприятия:
- Основные направления обеспечения безопасности информационных систем
- 1. Правовая защита:
- Классификация способов защиты конфиденциальной информации
- Мероприятия по защите информации. Общие процедуры обеспечения сохранности информации
- Совокупность методов, средств и мероприятий по защите информации
- Правовое регулирование в области безопасности информации Направления деятельности государства в области защиты информации
- Законодательная база информатизации общества
- Общая характеристика организационных методов защиты информации в информационных системах
- Опыт законодательного регулирования проблем защиты информации в других странах
- Контрольные вопросы к лекции 17
- 1. Назовите основные направления обеспечения безопасности информационных систем.
- Лекция 18
- Средства защиты информации
- Криптографические методы защиты информации
- Асимметричные системы с открытым ключом
- Компьютерная стеганография
- Принципы построения компьютерной стеганографии
- Парольная защита операционных систем
- Электронная цифровая подпись
- Защита сети с помощью биометрических систем Теоретические основы биометрии
- Контрольные вопросы к лекции 18
- Лекция 19
- Компьютерные вирусы. Методы защиты от компьютерных вирусов. Антивирусные программы
- Защита от компьютерных вирусов
- Определение компьютерного вируса
- Вирус – саморазмножающаяся искусственная конструкция
- Авторы вирусных программ
- Классификация компьютерных вирусов
- Методы обнаружения и удаления компьютерных вирусов Комплекс боязни вирусов
- Основные методы защиты от компьютерных вирусов
- Профилактика вирусного заражения
- Источники заражения Глобальные сети – электронная почта.
- Основные правила защиты
- Проблема защиты от макровирусов
- Антивирусные программы Критерии оценки антивирусных программ
- I. Для домашнего пользователя
- II. Для среднего и малого бизнеса
- Компания 3ao «диалогнаука»
- Антивирусная защита домашнего пк и рабочих станций
- Действия при заражении вирусом
- Лечение компьютера
- Лечение дисков
- Профилактика против заражения вирусом
- Проверка поступающих извне данных:
- Защита от загрузочных вирусов:
- Контрольные вопросы к лекции 19
- Лекция 20
- Архиваторы
- История развития теории сжатия информации. Создание архивов. Архиватор WinRar.
- История развития теории сжатия информации
- Создание архивов
- Архиватор WinRar
- Контрольные вопросы к лекции 20
- Тесты к курсу лекций по дисциплине «Информатика»
- Г). Измерение ее величины в байтах
- Е). Увеличение тезауруса
- А) 1 кбайт, 1010 байт, 20 бит, 2 байта, 10 бит б) 1010 байт, 1 Кбайт, 20 бит, 2 байта, 10 бит
- 29. Тезаурусный метод оценки количества информации основан на:
- 30. Под угрозой безопасности информации понимают
- 31. К случайным угрозам безопасности информации относят
- 32. К преднамеренным угрозам безопасности информации относят
- Б) технические средства и программные приложения
- Б) Обработка статистической информации в) математическая обработка информации
- Г) программа
- 111. Если ячейка содержит «#знач!», то:
- 112. Понятие алгоритма определяется как…
- 113. Наиболее наглядным способом записи алгоритма является
- А) условие и оператор, выполняемый в случае истинности условия
- Г) только условие