Операция умножения над обратными кодами сомножителей
Рассмотрим умножение с младших разрядов с анализом знаков сомножителей:
- если Х>0 и Y>0, то здесь используется обычная методика,
- если Х<0 и Y>0, то в данном случае:
A(i) = A(i-1)∙2-1 + [Х<0]0 ∙ у(n+1-i),
и в этом случае, как частичные произведения, так и окончательное, будут представлены в обратном коде;
- если Х>0, а Y<0 ,то необходимо осуществить передачу [-0, x1, ..., xn]0 = 1, ... в сумматор, если y(i) = 0. При y(i) = 1 передача множимого не производится. При этом y(i) – цифры обратного кода отрицательного множителя;
- если Х<0 и Y<0, то при yi = 0 осуществляется передача не исходного кода [Х<0]0 = 1, … , а положительного кода множимого 0,x1...xn, который получается с помощью логической операции отрицания; при y(i) = 1 передача множимого не осуществляется. Произведение в этом случае получается положительным.
Данную методику можно распространить и на умножение со старших разрядов обратных кодов. Преимущество умножения чисел в дополнительных и обратных кодах заключается в том, что знак и цифровая часть произведения получаются за один этап, состоящий из (n+1) тактов сдвига и сложения.
Умножение на два разряда одновременно
Для сокращения времени, затрачиваемого ЭВМ на умножение, часто используют способ обработки двух разрядов множителя одновременно. При умножении прямых кодов чисел с младших разрядов этот способ предполагает рассмотрение всех комбинаций кодов множителя в двух разрядах: 00,01,10,11. Код 00 – нет передачи множимого, код 01 – одна передача множимого, код 10 – также одна «косая» передача множимого со сдвигом (X∙2+1). Код 11 можно образовать из кодов 100 и -01, так как 100‑01=11. Т.е. при умножении на код 11 можно осуществлять передачу множимого в соответствии с кодом -01 (т.е. вычитать множимое), но при умножении на следующую пару необходимо к коду пары разрядов множителя прибавить единицу.
Деление чисел с фиксированной запятой перед старшим разрядом
Операция деления в двоичной системе счисления может быть записана в виде
Z=X/Y=z3.z-1z-2...z-m; z3, zi{0,1}.
При делении делимого Х на делитель Y получается частное Z и остаток O, который может быть равен нулю или некоторому числу в зависимости от значений Х и Y и числа шагов деления. Различают деление со сдвигом остатка или со сдвигом делителя. При делении n-разрядных чисел по любому из этих способов на первом шаге выполняют пробное вычитание (сложение в обратных или дополнительных кодах с положительным знаком делимого и отрицательным знаком делителя)
X-Y=O1 при X,Y 0.
В результате пробного вычитания получают остаток
O0 = O3. O-1 O-2 … O-(n-1)
со знаком О3 в старшем разряде. Если знак положителен О3=0, то первая цифра частного с весом 20 равна единице z0=1, т.е. |Z|1, и частное не может быть представлено дробью (с фиксированной запятой перед старшим разрядом). Следовательно, |X||Y|. Выдается сигнал переполнения разрядной сетки (ПП=1) и деление прекращается. При О3=1, z0=0 деление продолжают до получения остатка, равного нулю в любом коде, или до получения необходимого числа m цифр частного (обычно m=n). При делении со сдвигом остатка дальнейшие шаги выполняются по формуле
При делении со сдвигом делителя
Очередная цифра частного по любому из способов деления определяется по правилу
Сдвиг отрицательного остатка выполняется по правилам сдвига в обратном коде: знак не сдвигается, освобождающиеся разряды соответствуют знаку в обратном коде.
В дополнительном коде при сдвиге влево младшие разряды обнуляются, при сдвиге вправо старший разряд числа соответствует знаковому.
Частное в конце деления получается в прямом коде, поэтому если на k-м шаге Ok=0, то деление прекращают и z-k,...,z-m=0.
Например, если X=0.1001, Y=1.1100 представлены в прямом коде, а вычитание осуществляется в дополнительном коде, тогда
-
0.1001
[X]Д+[-Y]Д
+1.0100
1.1101
После пробного вычитания остаток 1.1101 отрицателен и, следовательно, в частном отсутствует целая часть, то есть z0=0.
Так как остаток отрицателен О3=1, то на следующем шаге к сдвинутому остатку прибавляют делитель (или прибавляют по другому способу сдвинутый делитель, как показано на примере справа).
-
1.1010
(O02+1)
1.1101
+0.1100
+ 0.0110
(Y2-1)
0.0110
(O1)
0.0011
(O1)
Остаток получен положительный (z-1=1) и не равный нулю. Деление продолжают
-
0.1100
(O12+1)
0.0011
+1.0100
+1.1101
([-Y2-2]Д)
0.0000
(O2)
0.0000
(O2)
Так как знак остатка положителен, то z-2=1, а весь остаток равен нулю, то приравнивая z-3=z-4=0, деление прекращают.
Знак частного определяется как zз=xз yз и в приведенном примере zз=0 1=1. В результате деления получается частное Z=0.1001 / 1.1100=1.1100 отрицательное, дробное. Если X и Y, например, имели коэффициент фиксации равным нулю, то результат деления можно проверить, представив числа в десятичной системе счисления
X= ; Y= ; Z= .
- Вычислительные машины, системы и сети
- Тема 1. Введение в предмет
- Умножение чисел в дополнительных кодах
- Операция умножения над обратными кодами сомножителей
- Выполнение операции сложения над числами с плавающей запятой
- 6. Стадии выполнения команды и способы адресации
- Тема 2. Оcновные архитектурные понятия Лекция 4. Определение понятия "архитектура"
- Архитектура системы команд. Классификация процессоров (cisc и risc)
- Лекция 5. Методы адресации и типы данных Методы адресации
- Типы команд
- Команды управления потоком команд
- Типы и размеры операндов
- Тема 3. Функциональная структура и организация процессора
- Структура конвейера процессора р6
- Процессор Pentium Pro
- Характеристики процессоров р6
- Характеристики процессоров amd
- Форматы чисел блоков sse
- Лекция 12: Сравнительный анализ процессоров с различной архитектурой Особенности процессоров с архитектурой sparc компании Sun Microsystems
- Процессоры pa-risc компании Hewlett-Packard
- Процессор mc88110 компании Motorola
- Особенности архитектуры Alpha компании dec
- Особенности архитектуры power компании ibm и PowerPc компаний Motorola, Apple и ibm
- Архитектура power
- Эволюция архитектуры power в направлении архитектуры PowerPc
- Тема 4. Структурные модели современных системных плат
- Тема 5. Организация памяти в эвм
- 2. Постоянные и полупостоянные запоминающие устройства
- 3. Оперативные запоминающие устройства
- 4. Характеристики обмена и типы оперативной памяти
- 7. Сегментация памяти
- 8. Страничная организация памяти
- Тема 6. Организация ввода-вывода
- Системные и локальные шины
- Устройства ввода/вывода Основные типы устройств ввода/вывода
- 2.1. Шины микропроцессорной системы
- 2.2. Циклы обмена информацией
- 2.3. Прохождение сигналов по магистрали
- Тема 2. Оценка производительности вычислительных систем
- Тема 5. Многопроцессорные системы Лекция 18: Классификация систем параллельной обработки данных
- Многопроцессорные системы с общей памятью
- Многопроцессорные системы с локальной памятью и многомашинные системы
- Тема 9. Организация микроконтроллеров
- 4.1. Классификация и структура микроконтроллеров
- 4.2. Процессорное ядро микроконтроллера
- Тема 10. Однокристальные микроконтроллеры серии pic
- 5.1. Основные особенности микроконтроллеров серии pic
- 5.2. Микроконтроллеры подгруппы pic16f8x
- Тема 11. Проектирование устройств на микроконтроллерах
- 6.1. Разработка микропроцессорной системы на основе микроконтроллера
- Тема 12. Системы высокой готовности и отказоустойчивые системы
- Подсистемы внешней памяти высокой готовности
- Требования, предъявляемые к системам высокой готовности
- Конфигурации систем высокой готовности
- Требования к системному программному обеспечению
- Требования высокой готовности к прикладному программному обеспечению
- Требования к сетевой организации и к коммуникациям
- Базовая модель vax/vms кластеров
- Критерии оценки кластеров Gartner Group
- Кластеры Alpha/osf компании dec
- Unix-кластеры компании ibm
- Кластеры at&t gis
- Кластеры Sequent Computer Systems
- Системы высокой готовности Hewlett-Packard
- Кластерные решения Sun Microsystems
- Отказоустойчивые решения Data General
- Список сокращений