2.2.3 Метод "золотого сечения"
Гораздо эффективнее, с точки зрения уменьшения затрат на вычисления, метод "золотого сечения": интервал неопределенности делится не пополам, как в методе дихотомии, а в определенном иррациональном соотношении
Это соотношение выполняется при ...
Метод заключается в том, что по заданным a иb как можно точнее определяется значение внутренней точкиx1 (см. рис. 2.6,б) по формуле
x1 = b – (b – a) / 1,618033989…
Рисунок 2.6 –Метод "золотого сечения":
а – золотое сечение; б – геометрическое представление
Точка x2 определяется как точка,симметричная точкеx1 на отрезке (a-b).
На основе анализа значений F1 =Q (x1) иF2 =Q (x2) интервал неопределенности сокращается путем отбрасывания из рассмотрения отрезка в котором экстремум исключен, исходя из условий уни-модальностиQ (u). Далее мы определим симметричную точку внутри новых границ, вычисляем значениеQ в этой точке, проводим анализ и т.д. до тех пор, пока разность между симметричными точками внутри интервала неопределенности больше. Блок-схема алгоритма метода "золотого сечения" представлена на рис. 2.7.
Рисунок 2.7 –Блок-схема метода "золотого сечения"
- Содержание
- Введение
- 1 Классический медод решения задач нелинейного программирования
- 1.1 Постановка задачи
- 1.2 Экстремум функции одной переменной
- 1.3 Экстремумы функций многих переменных
- 1.4 Метод неопределенных множителей Лагранжа
- 1.4.1 Основные положения
- 1.4.2 Геометрическая интерпретация метода множителей Лагранжа
- 1.4.3 Экономическая трактовка метода множителей Лагранжа
- 1.4.4 Особые случаи
- 1.5 Особенности реальных задач
- 2 Численные методы решения задач нелинейного программирования
- 2.1 Общая характеристика методов решения задач нелинейного программирования
- 2.2 Методы одномерной оптимизации
- 2.2.1 Метод прямого сканирования
- 2.2.2 Метод половинного деления
- 2.2.3 Метод "золотого сечения"
- 2.2.4 Метод Фибоначчи
- 2.3 Методы многомерной оптимизации
- 2.3.1 Метод Гаусса-Зайделя
- 2.3.2 Метод градиента
- 2.3.3 Метод наискорейшего спуска
- 2.3.4 Метод квантования симплексов
- 2.3.5 Поиск при наличии "оврагов" целевой функции
- 2.4 Методы поиска условного экстремума
- 2.4.1 Метод проектирования вектора-градиента
- 2.4.2 Метод ажурной строчки
- 2.5 Проблемы поиска глобального экстремума
- 3 Численные методы решения задач нелинейного программирования
- 3.1 Графический метод решения задач нелинейного программирования
- 3.2 Метод множителей Лагранжа
- 3.3 Компьютерная реализация решений задач нелинейного программирования
- 3.3.1 Решение задач нелинейного программирования в среде приложенияExcel
- 3.3.2 Решение задач нелинейного программирования в среде приложения Matlab
- Перечень ссылок
- Приложение а Блок-схемы методов