2.3.3 Метод наискорейшего спуска
При применении метода градиента на каждом шаге вычисляются значения всех частных производных оптимизируемой функции Q по всем независимым переменнымU, что при большом числе этих переменных приводит к весьма большому времени поиска оптимума. Сократить время поиска позволяет метод наискорейшего спуска, блок-схема, где – точность вычисления,H – величина шага,
n – размерность вектораu,Q – алгоритм вычисления целевой функцииQ (u),
L –количество шагов по конкретному направлению градиента функцииQ.
Таким образом, в начальной точке u0 определяется градиент целевой функциии, следовательно, направление ее наибыстрейшего убывания; далее делается шаг спуска в этом направлении. Если значение целевой функции уменьшились, то делается следующий шаг в этом же самом направлении. Процедура повторяется до тех пор, пока в этом направлении не будет найден минимум, после чего только вычисляется градиент и определяется новое направление наибыстрейшего убывания целевой функции.
По сравнению с методом градиента метод наискорейшего спуска оказывается более выгодным из-за сокращения объема вычислений. Чем менее резко изменяется направление градиента целевой функции, тем выгоднее использовать метод наискорейшего спуска, т.е. вдали от оптимума. Вблизи оптимума рассматриваемый метод автоматически переходит в метод градиента. Окончание поиска происходит в соответствии с теми же критериями, что и в методе градиента.
- Содержание
- Введение
- 1 Классический медод решения задач нелинейного программирования
- 1.1 Постановка задачи
- 1.2 Экстремум функции одной переменной
- 1.3 Экстремумы функций многих переменных
- 1.4 Метод неопределенных множителей Лагранжа
- 1.4.1 Основные положения
- 1.4.2 Геометрическая интерпретация метода множителей Лагранжа
- 1.4.3 Экономическая трактовка метода множителей Лагранжа
- 1.4.4 Особые случаи
- 1.5 Особенности реальных задач
- 2 Численные методы решения задач нелинейного программирования
- 2.1 Общая характеристика методов решения задач нелинейного программирования
- 2.2 Методы одномерной оптимизации
- 2.2.1 Метод прямого сканирования
- 2.2.2 Метод половинного деления
- 2.2.3 Метод "золотого сечения"
- 2.2.4 Метод Фибоначчи
- 2.3 Методы многомерной оптимизации
- 2.3.1 Метод Гаусса-Зайделя
- 2.3.2 Метод градиента
- 2.3.3 Метод наискорейшего спуска
- 2.3.4 Метод квантования симплексов
- 2.3.5 Поиск при наличии "оврагов" целевой функции
- 2.4 Методы поиска условного экстремума
- 2.4.1 Метод проектирования вектора-градиента
- 2.4.2 Метод ажурной строчки
- 2.5 Проблемы поиска глобального экстремума
- 3 Численные методы решения задач нелинейного программирования
- 3.1 Графический метод решения задач нелинейного программирования
- 3.2 Метод множителей Лагранжа
- 3.3 Компьютерная реализация решений задач нелинейного программирования
- 3.3.1 Решение задач нелинейного программирования в среде приложенияExcel
- 3.3.2 Решение задач нелинейного программирования в среде приложения Matlab
- Перечень ссылок
- Приложение а Блок-схемы методов