Диплом (Швед)
Приложение а Блок-схемы методов
Содержание
- Содержание
- Введение
- 1 Классический медод решения задач нелинейного программирования
- 1.1 Постановка задачи
- 1.2 Экстремум функции одной переменной
- 1.3 Экстремумы функций многих переменных
- 1.4 Метод неопределенных множителей Лагранжа
- 1.4.1 Основные положения
- 1.4.2 Геометрическая интерпретация метода множителей Лагранжа
- 1.4.3 Экономическая трактовка метода множителей Лагранжа
- 1.4.4 Особые случаи
- 1.5 Особенности реальных задач
- 2 Численные методы решения задач нелинейного программирования
- 2.1 Общая характеристика методов решения задач нелинейного программирования
- 2.2 Методы одномерной оптимизации
- 2.2.1 Метод прямого сканирования
- 2.2.2 Метод половинного деления
- 2.2.3 Метод "золотого сечения"
- 2.2.4 Метод Фибоначчи
- 2.3 Методы многомерной оптимизации
- 2.3.1 Метод Гаусса-Зайделя
- 2.3.2 Метод градиента
- 2.3.3 Метод наискорейшего спуска
- 2.3.4 Метод квантования симплексов
- 2.3.5 Поиск при наличии "оврагов" целевой функции
- 2.4 Методы поиска условного экстремума
- 2.4.1 Метод проектирования вектора-градиента
- 2.4.2 Метод ажурной строчки
- 2.5 Проблемы поиска глобального экстремума
- 3 Численные методы решения задач нелинейного программирования
- 3.1 Графический метод решения задач нелинейного программирования
- 3.2 Метод множителей Лагранжа
- 3.3 Компьютерная реализация решений задач нелинейного программирования
- 3.3.1 Решение задач нелинейного программирования в среде приложенияExcel
- 3.3.2 Решение задач нелинейного программирования в среде приложения Matlab
- Перечень ссылок
- Приложение а Блок-схемы методов