1.4.3 Экономическая трактовка метода множителей Лагранжа
В некоторых задачах множители Лагранжа допускают и экономическое толкование. Если толковать целевую функцию Q (u1, ...,un) как прибыль, получаемую некоторым предприятием при использовании ресурсов, а условия k ограничения на дефицит ресурсов, то при (u1, ...,un) < 0 прибыль, то максимум целевой функции будет расти.
Экономист такую задачу будет решать следующим образом. Он назначит некоторые цены на единицы ресурсов и предложит потребителю купить их по этой цене. Последний, максимизируя чистую прибыль, найдет (u1, ...,un) и скажет, сколько ресурсов он хотел бы купить. В экономике почти всегда бывает так, что чем больше, тем меньше (u1, ...,un), и чем меньше, тем больше (u1, ...,un). Если окажется, что (u1, ...,un) > 0, то экономист повысит цену, если (u1, ...,un) < 0 – понизит. Так будет происходить до тех пор, пока при некоторой цене, называемой равновесной, потребителю будет выгодно, чтобы дефицит ресурсов(u1, ...,un) был равен нулю, при этом чистая прибыль будет максимальна, т.е. будут выполняться условия
Таким образом, равновесная цена с точностью до знака равна множителю Лагранжа.
\
- Содержание
- Введение
- 1 Классический медод решения задач нелинейного программирования
- 1.1 Постановка задачи
- 1.2 Экстремум функции одной переменной
- 1.3 Экстремумы функций многих переменных
- 1.4 Метод неопределенных множителей Лагранжа
- 1.4.1 Основные положения
- 1.4.2 Геометрическая интерпретация метода множителей Лагранжа
- 1.4.3 Экономическая трактовка метода множителей Лагранжа
- 1.4.4 Особые случаи
- 1.5 Особенности реальных задач
- 2 Численные методы решения задач нелинейного программирования
- 2.1 Общая характеристика методов решения задач нелинейного программирования
- 2.2 Методы одномерной оптимизации
- 2.2.1 Метод прямого сканирования
- 2.2.2 Метод половинного деления
- 2.2.3 Метод "золотого сечения"
- 2.2.4 Метод Фибоначчи
- 2.3 Методы многомерной оптимизации
- 2.3.1 Метод Гаусса-Зайделя
- 2.3.2 Метод градиента
- 2.3.3 Метод наискорейшего спуска
- 2.3.4 Метод квантования симплексов
- 2.3.5 Поиск при наличии "оврагов" целевой функции
- 2.4 Методы поиска условного экстремума
- 2.4.1 Метод проектирования вектора-градиента
- 2.4.2 Метод ажурной строчки
- 2.5 Проблемы поиска глобального экстремума
- 3 Численные методы решения задач нелинейного программирования
- 3.1 Графический метод решения задач нелинейного программирования
- 3.2 Метод множителей Лагранжа
- 3.3 Компьютерная реализация решений задач нелинейного программирования
- 3.3.1 Решение задач нелинейного программирования в среде приложенияExcel
- 3.3.2 Решение задач нелинейного программирования в среде приложения Matlab
- Перечень ссылок
- Приложение а Блок-схемы методов