logo search
Matematika

12) Определители второго порядка. Формулы Крамера

Определители второго порядка. Мы видели, что формулы для решения системы двух линейных уравнений с двумя неизвестными имеют вид:

x = ( ce – bf ) / ( ae – bd )

(3)

y = ( af – cd ) / ( ae – bd ) .

Эти формулы легко запоминаются, если ввести для их числителей и знаменателей следующий символ:

, который будет обозначать выражение: ps – qr .

Это выражение получается перекрёстным умножением чисел p, q, r, s :

и последующим вычитанием одного произведения из другого: ps – qr. Знак « + » берётся для произведения чисел, лежащих на диагонали, идущей из левого верхнего числа к правому нижнему; знак « – » - для другой диагонали, идущей из правого верхнего числа к левому нижнему. Например,

Выражение называется определителем второго порядка.

13) Решение систем 2-х линейных уравнений с двумя неизвестными по формулам Крамера

Правило Крамера. Используя определители, можно переписать формулы (3):

Формулы (4) называются правилом Крамера для системы двух линейных уравнений с двумя неизвестными.

Исследование решений системы двух линейных уравнений с двумя неизвестными, показывает, что в зависимости от коэффициентов уравнений возможны три различных случая:

1) коэффициенты при неизвестных не пропорциональны: a : d ≠ b : e ,

в этом случае система линейных уравнений имеет единственное решение, получаемое по формулам (4);

2) все коэффициенты уравнений пропорциональны: a : d = b : e = c : f ,

в этом случае система линейных уравнений имеет бесконечное множество решений, так как здесь мы имеем фактически одно уравнение вместо двух.

3) коэффициенты при неизвестных пропорциональны, но не пропорциональны свободным членам: a: d = b: e ≠ c: f,

в этом случае система линейных уравнений не имеет решений, так как мы имеем противоречивые уравнения.