11) Системы двух линейных уравнений с двумя неизвестными и способы их решения
Системы двух линейных уравнений с двумя неизвестными имеют вид:
где a, b, c, d, e, f – заданные числа; x, y – неизвестные. Числа a, b, d, e – коэффициенты при неизвестных; c, f – свободные члены. Решение этой системы уравнений может быть найдено двумя основными методами.
1.Метод подстановки.
1) Из одного уравнения выражаем одно из неизвестных, например x, через коэффициенты и другое неизвестное y:
x = ( c – by ) / a . (2)
2) Подставляем во второе уравнение вместо x :
d ( c – by ) / a + ey = f .
3) Решая последнее уравнение, находим y :
y = ( af – cd ) / ( ae – bd ).
4) Подставляем это значение вместо y в выражение (2) :
x = ( ce – bf ) / ( ae – bd ) .
П р и м е р . Решить систему уравнений:
Из первого уравнения выразим х через коэффициенты и y :
x = ( 2y + 4 ) / 3 .
Подставляем это выражение во второе уравнение и находим y :
( 2y + 4 ) / 3 + 3y = 5 , откуда y = 1 .
Теперь находим х, подставляя найденное значение вместо y в выражение для х: x = ( 2 · 1 + 4 ) / 3, откуда x = 2 .
2. Сложение или вычитание. Этот метод состоит в следующем.
1) Умножаем обе части 1-го уравнения системы (1) на (– d ), а обе части 2-го уравнения на а и складываем их:
Отсюда получаем: y = ( af – cd ) / ( ae – bd ).
2) Подставляем найденное для y значение в любое уравнение системы (1):
ax + b( af – cd ) / ( ae – bd ) = c.
3) Находим другое неизвестное: x = ( ce – bf ) / ( ae – bd ).
- Определение действительного числа
- 2) Определение абсолютной погрешности
- 3)Определение относительной погрешности
- 4) Определение линейных уравнений с одной переменной
- 5) Определение линейных неравенств с одной переменной
- 6) Системы неравенств с одной переменной и способы их решения
- 7) Квадратные уравнения и способы их решения
- 8) Квадратные неравенства и способы их решения
- 9) Нелинейные неравенства с одной переменной и способы их решения
- 10) Иррациональные уравнения и способы их решения
- 11) Системы двух линейных уравнений с двумя неизвестными и способы их решения
- 12) Определители второго порядка. Формулы Крамера
- 14) Определитель третьего порядка и его вычисления
- 15) Решение систем трёх линейных уравнений с тремя неизвестными с помощью определителей третьего порядка
- 16) Числовая функция и способы её задания
- 17) Свойства функции (область определения и значения)
- 18) Свойства функции (Монотонность функции.)
- 19) Свойства функции (Четность (нечетность), переодичность)