Matematika
5) Определение линейных неравенств с одной переменной
Линейные неравенства называются неравенство вида: ах + b > 0 (ax + b < 0), где a и b – действительные числа.
Пример: 5-х/8 + 3-2х/4 ≥ 0
5-х + 6-4х ≥ 8
-х – 4х ≥ 8 – 5 – 6
-5х ≥ - 19
х ≤ 19/5
Содержание
- Определение действительного числа
- 2) Определение абсолютной погрешности
- 3)Определение относительной погрешности
- 4) Определение линейных уравнений с одной переменной
- 5) Определение линейных неравенств с одной переменной
- 6) Системы неравенств с одной переменной и способы их решения
- 7) Квадратные уравнения и способы их решения
- 8) Квадратные неравенства и способы их решения
- 9) Нелинейные неравенства с одной переменной и способы их решения
- 10) Иррациональные уравнения и способы их решения
- 11) Системы двух линейных уравнений с двумя неизвестными и способы их решения
- 12) Определители второго порядка. Формулы Крамера
- 14) Определитель третьего порядка и его вычисления
- 15) Решение систем трёх линейных уравнений с тремя неизвестными с помощью определителей третьего порядка
- 16) Числовая функция и способы её задания
- 17) Свойства функции (область определения и значения)
- 18) Свойства функции (Монотонность функции.)
- 19) Свойства функции (Четность (нечетность), переодичность)