4.4. Выбор класса защиты.
Продолжим изучение вопросов, связанных с американским стандартом защиты информации "Оранжевая книга". В предыдущем параграфе были определены семь классов систем защиты информации, причем требования в классах от С к А монотонно возрастали. Американцы не опубликовали детальный анализ риска, который определяет эти требования. Однако, одновременно со стандартом, был опубликован документ "Computer Security Requirements-Guidance for Applying the DoD Trusted Computer System Evaluation Criteria in Specific Environment" (далее будем называть его "Требования"), в котором изложен порядок выбора класса систем в различных условиях. Этот документ частично отражает результаты анализа риска, основания для выбора политики безопасности в связи с этими рисками и меры обеспечения гарантий соблюдения политики безопасности. Всюду далее предполагаем, что в информацию внесена MLS решетка ценностей. Выбор требуемого класса безопасности систем определяется следующими основными факторами, характеризующими условия работы системы.
1. Безопасность режима функционирования системы. Американцы различают 5 таких режимов:
а. Режим, в котором система постоянно обрабатывает ценную информацию одного класса в окружении, которое обеспечивает безопасность для работы с этим классом.
в. Режим особой секретности самой системы. Все пользователи и элементы системы имеют один класс и могут получить доступ к любой информации. Этот режим отличается от предыдущего тем, что здесь обрабатывается информация высших грифов секретности.
с. Многоуровневый режим, который позволяет системе обработку информации двух или более уровней секретности. Причем не все пользователи имеют допуск ко всем уровням обрабатываемой информации.
d. Контролирующий режим. Это многоуровневый режим обработки информации, при котором нет полной гарантии защищенности ТСВ. Это накладывает ограничения на допустимые классы ценной информации, подлежащей обработке.
е. Режим изолированной безопасности. Этот режим позволяет изолированно обрабатывать информацию различных классов или классифицированную и неклассифицированную информацию. Причем возможно, например, что безопасно обрабатывается только информация класса TS, а остальная информация не защищена вовсе.
2. Основой для выбора класса защиты является индекс риска. Он определяет минимальный требуемый класс.
Отобразим классы секретности в числа согласно таблице: U-0, С-1, S-2, TS-3. Эта таблица не совсем точно отражает соответствие из "Требований". Но здесь мы просто объясняем идею подхода. Определим Rmin - минимальный уровень допуска пользователя в системе, и Rmax - максимальный класс ценности информации, присутствующий в системе. В большинстве случаев индекс риска определяется по формуле:
Risk Index=Rmax-Rmin
Исключения касаются случая, когда , тогда
{ 1, если есть категории, к которым кто-либо из пользователей не имеет доступа
RiskIndex = {
{ 0, в противном случае
И также некоторые исключения есть в случае обработки TS-информации.
Пример 1. Если минимальный допуск пользователя в системе - С, а максимальный гриф обрабатываемой информации - S, то Rmin =2, Rmax=3. Тогда RiskIndex = l .
В результате учета всех ценностей и определения дополнительных классов у американцев получается восемь значений индекса риска от О до 7. Для этих значений индекса риска устанавливается следующее соответствие с минимальными требуемыми классами систем в случае, когда система функционирует во враждебном окружении.
RiskIndex | Безопасность режима функционирования | Минимальный класс по классификации “Оранжевой книги” |
0 | a | нет обязательного минимума |
0 | b | B1 |
1 | c, d, e | B2 |
2 | c, d, e | B3 |
3 | c, d | A1 |
4 | c | A1 |
5 | c | * |
6 | c | * |
7 | c | * |
Символ * означает, что в момент издания книги (1985 г.) минимальные требования по защите информации при данном значении индекса риска выше достигнутого уровня технологии.
Если система функционирует в окружении, которое можно назвать "безопасным периметром", то требования к минимальным классам значительно ниже.
- 2. Системообразующие основы моделирования. Модель действия.
- 3. Системообразующие основы моделирования. Модель объекта.
- 4. Системообразующие основы моделирования. Эффективность применения эвм.
- 5.Анализ и синтез при создании эвм. Концепция синтеза. Структура множества q.
- Концепция синтеза
- Модель Системы ↔ Условие замыкания ↔ Модель Действия
- 6. Принцип системности. Задача а.
- 7. Принцип системности. Задача б.
- 8. Принцип системности. Задача в.
- 9. Принцип системности. Задача г.
- 10.Теория подобия при синтезе модели эвм
- 11.Синтез модели и способов её применения, осложненный конфликтной ситуацией.
- 12.Структурная схема взаимодействия трёх базовых подсистем при разрешении конфликта.
- 13. Алгоритм логической последовательности выполнения команд пс в условиях разрушения множества q
- 14. Компенсация разрушения программной системы изменением аппаратной части
- 15. Компенсация разрушения аппаратной части изменением программной системы
- 16. Язык, объекты, субъекты. Основные понятия.
- 17. Язык, объекты, субъекты. Аксиома
- 18. Иерархические модели и модель взаимодействия открытых систем .
- Модель osi/iso.
- 19. Модель osi/iso.Прикладной уровень (пУ).
- 20. Модель osi/iso.Уровень представления (уп).
- 21. Модель osi/iso.Уровень сеанса (ус).
- 22. Модель osi/iso.Транспортный уровень (ту).
- 23. Модель osi/iso.Сетевой уровень (су).
- 24. Модель osi/iso.Канальный уровень.
- 25. Модель osi/iso.Физический уровень.
- 26. Информационный поток. Основные понятия.
- 27. Информационные потоки в вычислительных системах.
- 28. Ценность информации. Аддитивная модель.
- 29. Ценность информации. Анализ риска.
- 30. Ценность информации. Порядковая шкала ценностей.
- 31. Ценность информации. Модель решетки ценностей.
- 32. Ценность информации. Решетка подмножеств х.
- 33. Ценность информации. Mls решетка
- 64. Угрозы информации
- 65. Угрозы секретности. Утрата контроля над системой защиты; каналы утечки информации.
- 66. Угрозы целостности
- 67. Политика безопасности. Определение политики безопасности
- 68. Дискреционная политика.
- 69. Политика mls.
- 70. Классификация систем защиты. Доказательный подход к системам защиты .
- 71. Классификация систем защиты. Системы гарантированной защиты.
- 72. Классификация систем защиты. Пример гарантированно защищенной системы обработки информации. Записывает во внешнюю память все объекты, которые он хочет сохранить для дальнейших сеансов;
- 74. Два типа оценки: без учета среды, в которой работает техника, в конкретной среде (эта процедура называется аттестованием).
- 75. Политика.Требование 1. Требование 2 - маркировка
- 76. Подотчетность. Требование 3 – идентификация. Требование 4 - подотчетность
- 77. Гарантии. Требование 5 – гарантии. Требование 6 - постоянная защита
- 78. Итоговая информация по классам критериев оценки; идентификация и аутентификация гарантии на правильную работу системы
- Политика обеспечения безопасности.
- Идентификация и аутентификация.
- 79. Архитектура системы; целостность системы гарантии на жизненный цикл тестирование функции безопасности. Документация. Выбор класса защиты.
- 4.4. Выбор класса защиты.
- 80. Математические методы анализа политики безопасности. Модель "take-grant"
- 81. Математические методы анализа политики безопасности. Модель Белла - Лападула (б-л).
- 82. Математические методы анализа политики безопасности. Модель Low-water-mark (Lwm).
- 83. Математические методы анализа политики безопасности. Модели j.Goguen, j.Meseguer (g-m).
- 84. Математические методы анализа политики безопасности.Модель выявления нарушения безопасности.
- 85. Синтез и декомпозиция защиты в распределенных системах.
- 86. Анализ компонент распределенной системы.
- 87. Проблема построения гарантированно защищенных баз данных. Иерархический метод построения защиты .
- 9.1. Иерархический метод построения защиты .
- 88. Математические методы анализа политики безопасности. Гарантированно защищенные базы данных.