26. Информационный поток. Основные понятия.
Структуры информационных потоков являются основой анализа каналов утечки и обеспечения секретности информации. Эти структуры опираются на теорию информации и математическую теорию связи. Рассмотрим простейшие потоки.
1. Пусть субъект S осуществляет доступ на чтение (r) к объекту О. В этом случае говорят об информационном потоке от О к S. Здесь объект О является источником, а S - получателем информации.
2. Пусть субъект S осуществляет доступ на запись (w) к объекту О. В этом случае говорят об информационном потоке от S к О. Здесь объект О является получателем, а S - источником информации.
Из простейших потоков можно построить сложные. Например, информационный поток от субъекта S2 к субъекту S1 по следующей схеме:
r w
S1 ---------- O ---------- S2 (1)
Субъект S2 записывает данные в объект О, а затем S1 считывает их. Здесь S2 - источник, а S1 - получатель информации. Можно говорить о передаче информации, позволяющей реализовать поток. Каналы типа (1), которые используют общие ресурсы памяти, называются каналами по памяти.
С точки зрения защиты информации, каналы и информационные потоки бывают законными или незаконными. Незаконные информационные потоки создают утечку информации и, тем самым, могут нарушать секретность данных.
Рассматривая каналы передачи информационных потоков, можно привлечь теорию информации для вычисления количества информации в потоке и пропускной способности канала. Если незаконный канал нельзя полностью перекрыть, то доля количества информации в объекте, утекающая по этому каналу, служит мерой опасности этого канала. В оценках качества защиты информации американцы используют пороговое значение для допустимой пропускной способности незаконных каналов.
С помощью теоретико-информационных понятий информационные потоки определяются следующим образом.
Будем считать, что всю информацию о вычислительной системе можно описать конечным множеством объектов (каждый объект - это конечное множество слов в некотором языке Я). В каждом объекте выделено состояние, а совокупность состояний объектов назовем состоянием системы. Функция системы - это последовательное преобразование информации в системе под действием команд. В результате, из состояния s мы под действием команды перейдем в состояние s', обозначается: s|-- s'(). Если последовательность команд, то композиция преобразований информации обозначается также, т.е. s|---s'() означает переход из состояния s в s' под действием последовательности команд (автоматная модель вычислительной системы).
В общем виде для объектов X в s и Y в s' определим информационный поток, позволяющий по наблюдению Y узнать содержание X.
Предположим, что состояние X и состояние Y - случайные величины с совместным распределением Р(х, у)=Р(Х=х, Y=y), где под {Х=х} понимается событие, что состояние объекта X равно значению х (аналогично в других случаях). Тогда можно определить: P(x), Р(у/х), Р(х/у), энтропию Н(Х), условную энтропию H(X/Y) и среднюю взаимную информацию
I(Х, Y) = Н(X) - H(X/Y).
Определение. Выполнение команды в состоянии s, переводящей состояние s в s', вызывает информационный поток от X к Y (обозначение Х-->Y ),если I(Х, Y)>0. Величина I(Х, Y) называется величиной потока информации от X к Y.
Определение. Для объектов X и Y существует информационный поток величины С (бит), если существуют состояния s и s' и последовательность команд такие, что s|-- s'(), X-->Y.
Оценка максимального информационного потока определяется пропускной способностью канала связиХ---> Y и равна по величине
C(, X, Y)=max I(X, Y).
P(x)
- 2. Системообразующие основы моделирования. Модель действия.
- 3. Системообразующие основы моделирования. Модель объекта.
- 4. Системообразующие основы моделирования. Эффективность применения эвм.
- 5.Анализ и синтез при создании эвм. Концепция синтеза. Структура множества q.
- Концепция синтеза
- Модель Системы ↔ Условие замыкания ↔ Модель Действия
- 6. Принцип системности. Задача а.
- 7. Принцип системности. Задача б.
- 8. Принцип системности. Задача в.
- 9. Принцип системности. Задача г.
- 10.Теория подобия при синтезе модели эвм
- 11.Синтез модели и способов её применения, осложненный конфликтной ситуацией.
- 12.Структурная схема взаимодействия трёх базовых подсистем при разрешении конфликта.
- 13. Алгоритм логической последовательности выполнения команд пс в условиях разрушения множества q
- 14. Компенсация разрушения программной системы изменением аппаратной части
- 15. Компенсация разрушения аппаратной части изменением программной системы
- 16. Язык, объекты, субъекты. Основные понятия.
- 17. Язык, объекты, субъекты. Аксиома
- 18. Иерархические модели и модель взаимодействия открытых систем .
- Модель osi/iso.
- 19. Модель osi/iso.Прикладной уровень (пУ).
- 20. Модель osi/iso.Уровень представления (уп).
- 21. Модель osi/iso.Уровень сеанса (ус).
- 22. Модель osi/iso.Транспортный уровень (ту).
- 23. Модель osi/iso.Сетевой уровень (су).
- 24. Модель osi/iso.Канальный уровень.
- 25. Модель osi/iso.Физический уровень.
- 26. Информационный поток. Основные понятия.
- 27. Информационные потоки в вычислительных системах.
- 28. Ценность информации. Аддитивная модель.
- 29. Ценность информации. Анализ риска.
- 30. Ценность информации. Порядковая шкала ценностей.
- 31. Ценность информации. Модель решетки ценностей.
- 32. Ценность информации. Решетка подмножеств х.
- 33. Ценность информации. Mls решетка
- 64. Угрозы информации
- 65. Угрозы секретности. Утрата контроля над системой защиты; каналы утечки информации.
- 66. Угрозы целостности
- 67. Политика безопасности. Определение политики безопасности
- 68. Дискреционная политика.
- 69. Политика mls.
- 70. Классификация систем защиты. Доказательный подход к системам защиты .
- 71. Классификация систем защиты. Системы гарантированной защиты.
- 72. Классификация систем защиты. Пример гарантированно защищенной системы обработки информации. Записывает во внешнюю память все объекты, которые он хочет сохранить для дальнейших сеансов;
- 74. Два типа оценки: без учета среды, в которой работает техника, в конкретной среде (эта процедура называется аттестованием).
- 75. Политика.Требование 1. Требование 2 - маркировка
- 76. Подотчетность. Требование 3 – идентификация. Требование 4 - подотчетность
- 77. Гарантии. Требование 5 – гарантии. Требование 6 - постоянная защита
- 78. Итоговая информация по классам критериев оценки; идентификация и аутентификация гарантии на правильную работу системы
- Политика обеспечения безопасности.
- Идентификация и аутентификация.
- 79. Архитектура системы; целостность системы гарантии на жизненный цикл тестирование функции безопасности. Документация. Выбор класса защиты.
- 4.4. Выбор класса защиты.
- 80. Математические методы анализа политики безопасности. Модель "take-grant"
- 81. Математические методы анализа политики безопасности. Модель Белла - Лападула (б-л).
- 82. Математические методы анализа политики безопасности. Модель Low-water-mark (Lwm).
- 83. Математические методы анализа политики безопасности. Модели j.Goguen, j.Meseguer (g-m).
- 84. Математические методы анализа политики безопасности.Модель выявления нарушения безопасности.
- 85. Синтез и декомпозиция защиты в распределенных системах.
- 86. Анализ компонент распределенной системы.
- 87. Проблема построения гарантированно защищенных баз данных. Иерархический метод построения защиты .
- 9.1. Иерархический метод построения защиты .
- 88. Математические методы анализа политики безопасности. Гарантированно защищенные базы данных.