logo search
Диплом (Швед)

1.4.1 Основные положения

Пусть требуется найти экстремум функции, например, минимум

Q(, при условии

,

Согласно методу Лагранжа для решения задач на условный экстремум функции составляется вспомогательная функция Лагранжа, которая определяется соотношением

,

где , =– неопределенные множители Лагранжа.

Таким образом, задача нахождения условного экстремума функции сводится к задаче нахождения безусловного экстремума функции, но число неизвестных в ней n +k (uι,ι =1, n j ,j =1, k ).

Как известно из п. 1.2 необходимым условием безусловного экстремума функции является равенство нулю частных производных, которые для данного конкретного случая записываются в виде

.

и дает n уравнений для определения неизвестных. Эта система уравнений дополняется к уравнениям и, следовательно, получается (n +k) неизвестных и (n +k) уравнений.

Метод множителей Лагранжа дает лишь необходимые условия существования условного экстремума для непрерывных функций, имеющих также непрерывные производные, поэтому найденные значения переменных могут и не давать экстремума функции Q (u1, ...,un), их надо проверить с использованием достаточных условий экстремума функции многих переменных.

В окончательном решении задачи фактически множители Лагранжа не известны, поэтому задача совместного решения системы, иногда ставится как задача исключения "k" неизвестных переменныхuι с последующим решением остающейся системыn уравнений сn неизвестными.

Задача Лагранжа имеет "n k" степеней свободы.