2.1. Введение
Методы линейного программирования, рассмотренные нами в гл. 1, являются хорошим инструментом для решения ряда проблем распределения ресурсов. Применение пакетов прикладных программ позволяет значительно упростить решение задачи. Поэтому лицо, принимающее решение, получает возможность уделить большее внимание интерпретации и оценке решения задачи. Однако применение прикладных пакетов предполагает предварительную формализацию модели линейного программирования. В процессе решения большинства проблем эта задача является основной. При построении модели необходимо идентифицировать ее переменные и сформулировать систему ограничений.
При решении некоторых видов проблем распределения ресурсов использование специально созданных для этих целей алгоритмов упрощает процесс построения исходной модели. Данная глава будет посвящена рассмотрению двух примеров таких алгоритмов, созданных для решения транспортной задачи и задачи о назначениях.
В обоих случаях проблема распределения ресурсов связана с продуктами, которые в соответствии с определенной целью перевозятся из пунктов производства в пункты потребления. Целью часто является минимизация общей стоимости транспортировки. Пусть, например, некоторой компании принадлежат три завода и пять пунктов распределения продукции, находящиеся в одном регионе. Администрация компании должна организовать перевозку конечной продукции с заводов в пункты распределения с минимальной стоимостью. В этой ситуации наиболее подходящими могли бы стать методы решения транспортной задачи.
Частным случаем транспортной задачи является задача о назначениях. Предполагается, что из каждого пункта производства в каждый пункт потребления перевозится только один товар. Например, в машинном цехе имеется шесть токарных станков различного срока службы и различной конструкции. Каждое утро начальник цеха должен распределить по этим станкам шесть видов работ. Продолжительность выполнения каждой работы на различных станках неодинакова. Начальник цеха намерен распределить по каждому станку работу таким образом, чтобы свести к минимуму общее время выполнения работ. В процессе решения этой и подобных проблем можно использовать алгоритм решения задачи о назначениях.
В настоящей главе мы рассмотрим применение указанных алгоритмов для решения задач небольшой размерности. Однако следует принять во внимание, что на практике размерность таких задач гораздо больше, поэтому решаются они с использованием пакетов прикладных программ. Более того, очень часто решение транспортной задачи осуществляется в несколько этапов, например, при перевозках типа "завод – склад – розничная продажа". В таких случаях приходится модифицировать основной алгоритм и использовать более сложные методы решения.
- Глава 1. Линейное программирование
- 1.1. Введение
- 1.2. Формулировка задачи линейного программирования
- Время, требуемое на обработку каждой модели в каждом цехе
- 1.3. Решение задачи линейного программирования
- Условие неотрицательности: х, у 0
- 1.3.1. Графическое решение задачи линейного программирования.
- 1.4. Анализ чувствительности
- 1.4.1. Воздействие изменений в обеспечении лимитирующим ресурсом на решение задачи линейного программирования
- 1.4.2. Воздействие на оптимальное решение изменений в обеспечении не лимитирующими ресурсами
- 1.4.3 Воздействие на оптимальное решение изменений в коэффициентах целевой функции
- Решение
- 1.5. Симплекс-метод решения задачи линейного программирования с множеством переменных
- Решение
- Первая симплекс-таблица
- Первая симплекс-таблица с учетом отношений
- Ведущий столбец х
- Вторая симплекс-таблица
- Вторая симплекс-таблица с отношениями
- Третья, итоговая, симплекс-таблица
- Интерпретация итоговой симплекс-таблицы
- Модификация итоговой таблицы
- 1.6. Анализ чувствительности и симплекс-метод
- Итоговая симплекс-таблица
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- 1.7. Двойственная модель линейного программирования
- Решение
- Упражнения
- Обосновать, сочтет ли администрация компании целесообразным такое предложение?
- Глава 2. Транспортная задача и задача о назначениях
- 2.1. Введение
- 2.2. Транспортная задача и алгоритм ее решения
- 2.2.1. Транспортная задача
- Стоимость перевозки бутылок, показатели спроса и предложения
- 2.2.2. Алгоритм решения транспортной задачи
- 2.2.3. Поиск начального распределения ресурсов
- Сбалансированная транспортная таблица
- Начальное распределение ресурсов, полученное методом минимальной стоимости
- Метод 2. Метод вогеля
- Начальное распределение перевозок, полученное методом Вогеля
- 2.2.4. Проверка на оптимальность
- Начальное распределение, полученное методом минимальной стоимости
- Начальное распределение перевозок, полученное методом минимальной стоимости
- Применение метода моди для проверки на оптимальность начального распределения перевозок
- 2.2.5. Поиск оптимального решения
- Ступенчатый цикл для (r, фиктивный) с Фиктивный
- Перераспределение перевозок
- Таким образом, теневые цены соответствующие пустым клеткам, будут равны:
- Проверка распределения перевозок на оптимальность с использованием метода моди
- 2.2.6. Анализ чувствительности
- 2.2.7. Модификации транспортной задачи
- Значения спроса и производственных мощностей
- Данные производственного плана для месяцев 1-4
- Исходная информация
- Ступенчатый цикл для клетки (z.M)
- Проверка оптимального решения — метод моди
- 2.3. Задача о назначениях
- 2.3.1. Алгоритм решения задачи о назначениях
- Расстояние от сбытовых баз до потребителей
- Выявление наименьших элементов по строкам
- Вычитание наименьшего элемента по строкам и выявление наименьшего элемента по столбцам
- Вычитание наименьшего элемента по столбцам
- Назначения в клетки с нулевыми значениями
- Скорректированная таблица с назначениями для нулевых клеток
- 2.3.2. Особые случаи задачи о назначениях
- Объемы продаж в различных торговых точках для различных продавцов
- Модификация исходных данных и выявление минимальных элементов
- Вычитание минимального элемента по строкам и выявление минимальных элементов во столбцам
- Вычитание минимального элемента по столбцам
- Недопустимые назначения
- Упражнения
- Упражнение 2.8
- Упражнение 2.12
- Тесты Вариант № 1
- К а) б) в) г) акие из приведенных решений являются опорными для следующей системы уравнений:
- Вариант № 2
- К а) . Б) . В) . Г) акие из приведенных решений являются опорными для следующей системы уравнений:
- Фирма производит три вида продукции (а, в, с) для впуска каждого из которых требуется определенное время обработки на всех четырех устройствах I, II, III, IV.
- В какой точке множества допустимых решений достигается минимум целевой функции
- Определить, какая из задач линейного программирования записана в канонической форме?
- 5. Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 3.
- Какие из приведенных решений являются опорными для следующей системы уравнений:
- В какой точке множества допустимых решений достигается максимум целевой функции ;
- О пределить, какая из задач линейного программирования записана в канонической форме?
- Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 4
- К а) б) в) г) акие из приведенных решений являются опорными для следующей системы уравнений:
- В какой точке множества допустимых решений достигается максимум целевой функции ;
- О пределить, какая из задач линейного программирования записана в канонической форме?
- Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 5
- 1 A) ; б) ; в) ; г) . . Какие из приведенных решений являются опорными для следующей системы уравнений:
- Литература