Сбалансированная транспортная таблица
Поставщик | Транспортные издержки для магазинов, ф. ст. за единицу | Общий объем предложения | |||
А | В | С | Фиктивный | ||
Р Q R | 10 2 1 | 20 10 20 | 5 8 7 | 0 0 0 | 9 4 8 |
Общий объем спроса | 3 | 5 | 6 | 7 | 21 |
МЕТОД 1. МЕТОД МИНИМАЛЬНОЙ СТОИМОСТИ
1. В клетку с минимальной единичной стоимостью записывают наибольшее возможное количество продукта.
2. Производится корректировка оставшихся объемов предложения и потребностей.
3. Выбирается следующая клетка с наименьшей стоимостью, в которую помещается наибольшее возможное количество продукта, и т.д. до тех пор, пока спрос и предложение не станут равными нулю.
4. Если наименьшее значение стоимости соответствует более чем одной клетке таблицы, выбор осуществляется случайным образом.
В табл. 2.4 стоимость транспортировки находится в верхнем правом углу каждой клетки, внутри прямоугольника. Индексы, соответствующие количествам продукта, характеризуют последовательность распределения ресурсов и облегчают читателю понимание процедуры распределения. Прочерки в клетках — отсутствие предложения или спроса, соответствующих этим клеткам.
1. Наименьшая стоимость транспортировки равна нулю. Следовательно, можно выбрать любую из клеток (Р, фиктивный), (Q, фиктивный) или (R, фиктивный). Пусть выбрана клетка (Р, фиктивный), в соответствии с алгоритмом в ней помещается максимальное количество продукта, равное 7 единицам. Предложение в Р и спрос фиктивного магазина уменьшаются на 7. Затем в клетках, которые уже нельзя использовать в дальнейшем распределении перевозок, ставится прочерк; в нашем случае это клетки (Q, фиктивный) и (R, фиктивный).
2. Клеток с нулевой стоимостью больше нет, поэтому выбирается клетка (R,A), которой соответствует наименьшая стоимость, равная 1. В данной клетке размещается наибольшее возможное количество продукта, равное 3. Затем производится корректировка итоговых значений спроса и предложения, соответствующих данным строке и столбцу, а в клетках (Р,А) и (Q.A), которые нельзя использовать в дальнейшем, ставится прочерк.
3. Наименьшая стоимость перевозки равна 5 и соответствует клетке (Р,С). В данной клетке размещаются две единицы изделия, оставшиеся на складе Р. Производится корректировка итоговых значений соответствующих строки и столбца, а в остальных клетках строки Р ставится прочерк.
4. Наконец, оставшееся количество продукта распределяется последовательно в клетки (R,C), (Q,B) и (R,B).
Если распределение является допустимым, то объемы предложения на складах и объемы потребностей во всех магазинах должны быть равны нулю. Полученное выше распределение перевозок является допустимым.
Стоимость ф. ст.
Таблица 2.4.
- Глава 1. Линейное программирование
- 1.1. Введение
- 1.2. Формулировка задачи линейного программирования
- Время, требуемое на обработку каждой модели в каждом цехе
- 1.3. Решение задачи линейного программирования
- Условие неотрицательности: х, у 0
- 1.3.1. Графическое решение задачи линейного программирования.
- 1.4. Анализ чувствительности
- 1.4.1. Воздействие изменений в обеспечении лимитирующим ресурсом на решение задачи линейного программирования
- 1.4.2. Воздействие на оптимальное решение изменений в обеспечении не лимитирующими ресурсами
- 1.4.3 Воздействие на оптимальное решение изменений в коэффициентах целевой функции
- Решение
- 1.5. Симплекс-метод решения задачи линейного программирования с множеством переменных
- Решение
- Первая симплекс-таблица
- Первая симплекс-таблица с учетом отношений
- Ведущий столбец х
- Вторая симплекс-таблица
- Вторая симплекс-таблица с отношениями
- Третья, итоговая, симплекс-таблица
- Интерпретация итоговой симплекс-таблицы
- Модификация итоговой таблицы
- 1.6. Анализ чувствительности и симплекс-метод
- Итоговая симплекс-таблица
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- 1.7. Двойственная модель линейного программирования
- Решение
- Упражнения
- Обосновать, сочтет ли администрация компании целесообразным такое предложение?
- Глава 2. Транспортная задача и задача о назначениях
- 2.1. Введение
- 2.2. Транспортная задача и алгоритм ее решения
- 2.2.1. Транспортная задача
- Стоимость перевозки бутылок, показатели спроса и предложения
- 2.2.2. Алгоритм решения транспортной задачи
- 2.2.3. Поиск начального распределения ресурсов
- Сбалансированная транспортная таблица
- Начальное распределение ресурсов, полученное методом минимальной стоимости
- Метод 2. Метод вогеля
- Начальное распределение перевозок, полученное методом Вогеля
- 2.2.4. Проверка на оптимальность
- Начальное распределение, полученное методом минимальной стоимости
- Начальное распределение перевозок, полученное методом минимальной стоимости
- Применение метода моди для проверки на оптимальность начального распределения перевозок
- 2.2.5. Поиск оптимального решения
- Ступенчатый цикл для (r, фиктивный) с Фиктивный
- Перераспределение перевозок
- Таким образом, теневые цены соответствующие пустым клеткам, будут равны:
- Проверка распределения перевозок на оптимальность с использованием метода моди
- 2.2.6. Анализ чувствительности
- 2.2.7. Модификации транспортной задачи
- Значения спроса и производственных мощностей
- Данные производственного плана для месяцев 1-4
- Исходная информация
- Ступенчатый цикл для клетки (z.M)
- Проверка оптимального решения — метод моди
- 2.3. Задача о назначениях
- 2.3.1. Алгоритм решения задачи о назначениях
- Расстояние от сбытовых баз до потребителей
- Выявление наименьших элементов по строкам
- Вычитание наименьшего элемента по строкам и выявление наименьшего элемента по столбцам
- Вычитание наименьшего элемента по столбцам
- Назначения в клетки с нулевыми значениями
- Скорректированная таблица с назначениями для нулевых клеток
- 2.3.2. Особые случаи задачи о назначениях
- Объемы продаж в различных торговых точках для различных продавцов
- Модификация исходных данных и выявление минимальных элементов
- Вычитание минимального элемента по строкам и выявление минимальных элементов во столбцам
- Вычитание минимального элемента по столбцам
- Недопустимые назначения
- Упражнения
- Упражнение 2.8
- Упражнение 2.12
- Тесты Вариант № 1
- К а) б) в) г) акие из приведенных решений являются опорными для следующей системы уравнений:
- Вариант № 2
- К а) . Б) . В) . Г) акие из приведенных решений являются опорными для следующей системы уравнений:
- Фирма производит три вида продукции (а, в, с) для впуска каждого из которых требуется определенное время обработки на всех четырех устройствах I, II, III, IV.
- В какой точке множества допустимых решений достигается минимум целевой функции
- Определить, какая из задач линейного программирования записана в канонической форме?
- 5. Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 3.
- Какие из приведенных решений являются опорными для следующей системы уравнений:
- В какой точке множества допустимых решений достигается максимум целевой функции ;
- О пределить, какая из задач линейного программирования записана в канонической форме?
- Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 4
- К а) б) в) г) акие из приведенных решений являются опорными для следующей системы уравнений:
- В какой точке множества допустимых решений достигается максимум целевой функции ;
- О пределить, какая из задач линейного программирования записана в канонической форме?
- Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 5
- 1 A) ; б) ; в) ; г) . . Какие из приведенных решений являются опорными для следующей системы уравнений:
- Литература