Недопустимые назначения
Данную проблему можно решить так же, как и транспортную задачу. Если по той или иной причине некоторое назначение является недопустимым, то в соответствующей клетке проставляется значение стоимости, которое заведомо больше любого другого значения. После этого в ходе реализации алгоритма мы сможем избежать данного назначения автоматически.
НЕСООТВЕТСТВИЕ ЧИСЛА ПУНКТОВ ПРОИЗВОДСТВА И НАЗНАЧЕНИЯ
Если исходная таблица не является квадратной, в нее следует включить дополнительные фиктивные строки и столбцы, необходимые для приведения ее к квадратной форме. Значения стоимости, соответствующие фиктивным клеткам, как правило, равны нулю.
Назначения, размещаемые в клетках фиктивных строк, фактически не существуют. Назначения, соответствующие фиктивным столбцам, на деле представляют собой те единицы, которые не подлежат распределению.
РЕЗЮМЕ
Транспортная модель — это частный случай модели линейного программирования. Стандартная задача включает в себя некоторое множество пунктов производства, например, несколько торговых складов, которые осуществляют поставки в некоторое множество пунктов назначения, например, в несколько магазинов. Цель состоит в минимизации общей стоимости транспортировки в рамках ограничений на спрос и предложение. Решение этой задачи может быть найдено с помощью традиционных методов линейного программирования. Относительно простая структура задачи позволяет, однако, разработать специальные алгоритмы, применение которых оказывается более трудоемким, чем применение обычных методов решения задач линейного программирования с множеством переменных.
Первый шаг алгоритма состоит в построении транспортной таблицы, в которой содержится информация об издержках транспортировки. Строкам этой таблицы соответствуют пункты производства, а столбцам — пункты назначения.
Второй шаг алгоритма — это поиск начального распределения перевозок. Нами было описано два метода реализации данной процедуры. В методе минимальной стоимости перевозки распределяются в первую очередь по наиболее дешевым маршрутам. Метод Вогеля предполагает расчет значений штрафной стоимости и такое распределение перевозок, которое позволяет избежать получения высоких штрафов. Однако ни один из методов не гарантирует, что полученное начальное распределение перевозок окажется оптимальным.
Третий шаг состоит в проверке начального распределения перевозок на оптимальность. Мы изложили два метода проверки решения на оптимальность. Оба они основаны на вычислении значений теневых цен для незаполненных клеток. Если эти значения положительны или равны нулю для всех пустых клеток, то полученное распределение перевозок является оптимальным.
В методе ступенек в пустую клетку помещается одна единица продукции. Затем определяются натуральные и стоимостные изменения, происшедшие под воздействием такого размещения. Метод МОДИ в большей степени основан на математической теории. Используя значения стоимости перевозки в каждой заполненной клетке, мы получаем стоимость, соответствующую строке или столбцу:
сij= ui + vj.
Используя значения компонент u и v, полученных для строк и столбцов соответственно, рассчитывают значения теневых цен, соответствующие всем пустым клеткам. Их расчет производится по формуле:
sij = cjj - (ui + vj).
Реализация четвертого шага необходима только в случае, если полученное распределение перевозок является неоптимальным. Для осуществления перераспределения применяется ступенчатый цикл, соответствующий клетке с отрицательным значением теневой цены. Полученное решение вновь подвергается проверке на оптимальность.
Транспортная задача может иметь некоторые специфические особенности. Если предложение и спрос несбалансированны, то необходимо ввести в задачу фиктивные пункты производства или назначения. Оптимальное решение должно находиться в крайней точке допустимого множества, иными словами, должно быть базисным. Базисным называется решение, число переменных в котором равно числу строк в таблице плюс число столбцов минус единица. Если число переменных оказывается меньше указанной величины, то решение является вырожденным, и в этом случае следует использовать пустые клетки, размещая в них псевдоперевозки, объем которых равен нулю.
Недопустимые маршруты могут быть блокированы введением в соответствующие клетки таблицы достаточно больших значений стоимости транспортировки. Целевую функцию задачи можно не только минимизировать, но и максимизировать.
Еще более специфической задачей, для которой разработаны особые методы решения, является задача о назначениях. Число пунктов производства в этой задаче совпадает с числом пунктов назначения, причем каждой строке и каждому столбцу должно соответствовать только одно назначение. Для решения этой модифицированной транспортной задачи был разработан Венгерский метод.
- Глава 1. Линейное программирование
- 1.1. Введение
- 1.2. Формулировка задачи линейного программирования
- Время, требуемое на обработку каждой модели в каждом цехе
- 1.3. Решение задачи линейного программирования
- Условие неотрицательности: х, у 0
- 1.3.1. Графическое решение задачи линейного программирования.
- 1.4. Анализ чувствительности
- 1.4.1. Воздействие изменений в обеспечении лимитирующим ресурсом на решение задачи линейного программирования
- 1.4.2. Воздействие на оптимальное решение изменений в обеспечении не лимитирующими ресурсами
- 1.4.3 Воздействие на оптимальное решение изменений в коэффициентах целевой функции
- Решение
- 1.5. Симплекс-метод решения задачи линейного программирования с множеством переменных
- Решение
- Первая симплекс-таблица
- Первая симплекс-таблица с учетом отношений
- Ведущий столбец х
- Вторая симплекс-таблица
- Вторая симплекс-таблица с отношениями
- Третья, итоговая, симплекс-таблица
- Интерпретация итоговой симплекс-таблицы
- Модификация итоговой таблицы
- 1.6. Анализ чувствительности и симплекс-метод
- Итоговая симплекс-таблица
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- 1.7. Двойственная модель линейного программирования
- Решение
- Упражнения
- Обосновать, сочтет ли администрация компании целесообразным такое предложение?
- Глава 2. Транспортная задача и задача о назначениях
- 2.1. Введение
- 2.2. Транспортная задача и алгоритм ее решения
- 2.2.1. Транспортная задача
- Стоимость перевозки бутылок, показатели спроса и предложения
- 2.2.2. Алгоритм решения транспортной задачи
- 2.2.3. Поиск начального распределения ресурсов
- Сбалансированная транспортная таблица
- Начальное распределение ресурсов, полученное методом минимальной стоимости
- Метод 2. Метод вогеля
- Начальное распределение перевозок, полученное методом Вогеля
- 2.2.4. Проверка на оптимальность
- Начальное распределение, полученное методом минимальной стоимости
- Начальное распределение перевозок, полученное методом минимальной стоимости
- Применение метода моди для проверки на оптимальность начального распределения перевозок
- 2.2.5. Поиск оптимального решения
- Ступенчатый цикл для (r, фиктивный) с Фиктивный
- Перераспределение перевозок
- Таким образом, теневые цены соответствующие пустым клеткам, будут равны:
- Проверка распределения перевозок на оптимальность с использованием метода моди
- 2.2.6. Анализ чувствительности
- 2.2.7. Модификации транспортной задачи
- Значения спроса и производственных мощностей
- Данные производственного плана для месяцев 1-4
- Исходная информация
- Ступенчатый цикл для клетки (z.M)
- Проверка оптимального решения — метод моди
- 2.3. Задача о назначениях
- 2.3.1. Алгоритм решения задачи о назначениях
- Расстояние от сбытовых баз до потребителей
- Выявление наименьших элементов по строкам
- Вычитание наименьшего элемента по строкам и выявление наименьшего элемента по столбцам
- Вычитание наименьшего элемента по столбцам
- Назначения в клетки с нулевыми значениями
- Скорректированная таблица с назначениями для нулевых клеток
- 2.3.2. Особые случаи задачи о назначениях
- Объемы продаж в различных торговых точках для различных продавцов
- Модификация исходных данных и выявление минимальных элементов
- Вычитание минимального элемента по строкам и выявление минимальных элементов во столбцам
- Вычитание минимального элемента по столбцам
- Недопустимые назначения
- Упражнения
- Упражнение 2.8
- Упражнение 2.12
- Тесты Вариант № 1
- К а) б) в) г) акие из приведенных решений являются опорными для следующей системы уравнений:
- Вариант № 2
- К а) . Б) . В) . Г) акие из приведенных решений являются опорными для следующей системы уравнений:
- Фирма производит три вида продукции (а, в, с) для впуска каждого из которых требуется определенное время обработки на всех четырех устройствах I, II, III, IV.
- В какой точке множества допустимых решений достигается минимум целевой функции
- Определить, какая из задач линейного программирования записана в канонической форме?
- 5. Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 3.
- Какие из приведенных решений являются опорными для следующей системы уравнений:
- В какой точке множества допустимых решений достигается максимум целевой функции ;
- О пределить, какая из задач линейного программирования записана в канонической форме?
- Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 4
- К а) б) в) г) акие из приведенных решений являются опорными для следующей системы уравнений:
- В какой точке множества допустимых решений достигается максимум целевой функции ;
- О пределить, какая из задач линейного программирования записана в канонической форме?
- Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 5
- 1 A) ; б) ; в) ; г) . . Какие из приведенных решений являются опорными для следующей системы уравнений:
- Литература