Решение
1. Производится x1 кг продукта R и x2 кг продукта Q в неделю. Максимизируется полученная за неделю прибыль Р (ф. ст.), где
Р = 5 x1 + 8x2 (ф. ст. в неделю)
в условиях следующей системы ограничений:
RM1: 2 x1 + 3 x2 10 кг в неделю;
RM2: 3,5 x1 + 1,5 x2 12 кг в неделю:
x1, x2 0.
2. Используя формулировку прямой модели, построим двойственную модель. Минимизировать G = 10 у1 + 12 у2 (ф. ст. в неделю) в условиях следующей системы ограничений:
Продукт R: 2 у1 + 3,5 у2 5 ф. ст. за единицу:
Продукт Q: 3 у1 + 1,5 у2 8 ф. ст. за единицу;
y1, y2 0
3. Прямая модель. Переменные модели — это количество каждого продукта, которое необходимо производить каждую неделю. Целевая функция задачи - это общая прибыль, получаемая в неделю от производства продуктов R и Q. Каждое ограничение соответствует одному виду сырья. Левая часть каждого ограничения представляет собой общее количество сырья одного вида, требуемое для производства обоих продуктов. Правая часть ограничений содержит общее количество сырья каждого вида, которое фирма может использовать в течение недели.
Двойственная модель. Переменные модели — это теневые цены ресурсов для прямой модели, т.е. величины, на которые увеличилось бы значение целевой: функции при росте имеющегося запаса сырья соответствующего вида на единицу. Теневые цены характеризуют стоимость единицы сырья каждого вида. Целевая функция задачи — это общая еженедельная стоимость всех видов сырья, используемых при производстве R и Q. Каждое ограничение связано с одним из продуктов. В левой части каждого ограничения дана общая стоимость всех видов сырья, используемых при выпуске 1 кг соответствующего продукта; в правой - прибыль от выпуска единицы соответствующего продукта. Обратимся вновь к формулировке двойственной модели и попытаемся дать интерпретацию отдельным ее компонентам (см. стр. 41).
Из каждого ограничения следует, что общая стоимость сырья, используемого для производства данного продукта, должна быть больше либо равна прибыли от производства единицы этого продукта. Из решения прямой или двойственной модели можно получить решение обратной: модели.
4. Графическое решение прямой задачи приведено на рис. 1.28.
Оптимальным решением задачи является точка А, лежащая на пересечении ограничения на сырье 1 и оси Q. Чтобы получать максимальную прибыль, следует производить только продукт Q в количестве 3 кг. При этом RM1 будет использоваться полностью, а RM2 — нет. Максимальная прибыль составит: 3 х 8 = 26,67 ф. ст. в неделю. Ниже приводится графическое решение двойственной задачи (рис.1.29).
Минимизировать G:
Продукт R:
Продукт Q:
Данная задача является задачей минимизации. Необходимо уменьшить значение целевой функции настолько, насколько это возможно, следовательно, перемещение линии уровня целевой функции осуществляется параллельно ее исходному положению в направлении начала координат. Точка Z является последней крайней точкой допустимого множества, через которую проходит линия уровня, и, таким образом, оптимальным решением двойственной задачи. Z является пересечением линии ограничения для продукта Q и оси y1 т.е.: y2 = 0.
И 3у1 + 1,5у2 = 8, следовательно, y2 = 0 и y1 = 2 .
Минимальная стоимость ресурсов в двойственной задаче имеет вид:
G= 10 х 2 +12х0 = 26,67 ф. ст. в неделю.
Это значение совпадает со значением целевой функции прямой задачи.
Обобщая полученные решения, можно сделать вывод, что максимальное значение прибыли, равное 26,27 ф. ст. в неделю, достигается, если продукт Q выпускать в количестве 3 кг, а продукт R не производить вообще. Стоимость сырья, т.е. теневые цены ресурсов, составила 2,67 ф. ст. за 1 кг RM1 и ноль для RM2. Эту же информацию можно было бы получить через проведение полного анализа только прямой задачи.
РЕЗЮМЕ
Модели линейного программирования используются в решении проблемы распределения ограниченных ресурсов для достижения своих целей в бизнесе. Целью может являться максимизация прибыли за неделю или минимизация ежедневных издержек. Формулировка задачи линейного программирования требует последовательного выполнения следующих шагов:
Шаг 1. Определение переменных решения.
Шаг 2. Определение линейной целевой функции и линейных ограничении.
Шаг 3. Выражение целевой функции через переменные задачи.
Шаг 4. Выражение ограничений через переменные задачи.
При формулировке задач с двумя или с множеством переменных применяется одна и та же процедура. Однако задачу с двумя переменными можно решить графически. Ограничения, которые обычно представлены неравенствами знака " " или " ", изображаются на графике с помощью прямых и областей на плоскости. Каждое ограничение разделяет плоскость графика на допустимую и недопустимую области. Область, точки которой удовлетворяют всем ограничениям задачи, называется допустимым множеством. Допустимое множество содержит все возможные решения задачи.
Оптимальное решение, которое всегда находится в крайней точке допустимого множества, можно найти после нанесения на график линии уровня целевой функции. Целевая функция перемещается параллельно этой линии в направлении, противоположном началу координат, в случае максимизации целевой функции, или в сторону начала координат в случае ее минимизации. Координаты последней крайней точки, через которую проходит линия уровня перед тем, как она всецело окажется вне пределов допустимого множества, являются значениями переменных, которые оптимизируют целевую функцию задачи.
Поскольку практическая реализация модели может осуществляться в условиях неопределенности, большое место в линейном программировании занимает анализ чувствительности модели. Этот метод позволяет учесть вариацию и неопределенность коэффициентов целевой функции и значений правой части ограничений задачи.
Задачи линейного программирования с множеством переменных решаются на компьютерах с помощью симплекс-метода. Итоговая таблица алгоритма симплекс-метода содержит оптимальное значение целевой функции, соответствующие ему значения переменных решения и значения остаточных или избыточных переменных. Кроме того, в ней указываются теневые цены на ресурсы. Итоговую таблицу симплекс-метода можно использовать также в анализе чувствительности, чтобы выявить общее воздействие изменений в запасах лимитирующих ресурсов на целевую функцию и каждое из ограничений.
Для каждой исходной задачи линейного программирования существует ее двойственная формулировка. Решения прямой и двойственной задачи одинаковы. Двойственную модель можно получить непосредственно из исходной прямой модели, поменяв местами ее коэффициенты. Иногда более простая формулировка двойственной задачи дает существенные преимущества в процессе решения по сравнению со сложной постановкой прямой задачи
- Глава 1. Линейное программирование
- 1.1. Введение
- 1.2. Формулировка задачи линейного программирования
- Время, требуемое на обработку каждой модели в каждом цехе
- 1.3. Решение задачи линейного программирования
- Условие неотрицательности: х, у 0
- 1.3.1. Графическое решение задачи линейного программирования.
- 1.4. Анализ чувствительности
- 1.4.1. Воздействие изменений в обеспечении лимитирующим ресурсом на решение задачи линейного программирования
- 1.4.2. Воздействие на оптимальное решение изменений в обеспечении не лимитирующими ресурсами
- 1.4.3 Воздействие на оптимальное решение изменений в коэффициентах целевой функции
- Решение
- 1.5. Симплекс-метод решения задачи линейного программирования с множеством переменных
- Решение
- Первая симплекс-таблица
- Первая симплекс-таблица с учетом отношений
- Ведущий столбец х
- Вторая симплекс-таблица
- Вторая симплекс-таблица с отношениями
- Третья, итоговая, симплекс-таблица
- Интерпретация итоговой симплекс-таблицы
- Модификация итоговой таблицы
- 1.6. Анализ чувствительности и симплекс-метод
- Итоговая симплекс-таблица
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- Модифицированные элементы итоговой симплекс-таблицы
- 1.7. Двойственная модель линейного программирования
- Решение
- Упражнения
- Обосновать, сочтет ли администрация компании целесообразным такое предложение?
- Глава 2. Транспортная задача и задача о назначениях
- 2.1. Введение
- 2.2. Транспортная задача и алгоритм ее решения
- 2.2.1. Транспортная задача
- Стоимость перевозки бутылок, показатели спроса и предложения
- 2.2.2. Алгоритм решения транспортной задачи
- 2.2.3. Поиск начального распределения ресурсов
- Сбалансированная транспортная таблица
- Начальное распределение ресурсов, полученное методом минимальной стоимости
- Метод 2. Метод вогеля
- Начальное распределение перевозок, полученное методом Вогеля
- 2.2.4. Проверка на оптимальность
- Начальное распределение, полученное методом минимальной стоимости
- Начальное распределение перевозок, полученное методом минимальной стоимости
- Применение метода моди для проверки на оптимальность начального распределения перевозок
- 2.2.5. Поиск оптимального решения
- Ступенчатый цикл для (r, фиктивный) с Фиктивный
- Перераспределение перевозок
- Таким образом, теневые цены соответствующие пустым клеткам, будут равны:
- Проверка распределения перевозок на оптимальность с использованием метода моди
- 2.2.6. Анализ чувствительности
- 2.2.7. Модификации транспортной задачи
- Значения спроса и производственных мощностей
- Данные производственного плана для месяцев 1-4
- Исходная информация
- Ступенчатый цикл для клетки (z.M)
- Проверка оптимального решения — метод моди
- 2.3. Задача о назначениях
- 2.3.1. Алгоритм решения задачи о назначениях
- Расстояние от сбытовых баз до потребителей
- Выявление наименьших элементов по строкам
- Вычитание наименьшего элемента по строкам и выявление наименьшего элемента по столбцам
- Вычитание наименьшего элемента по столбцам
- Назначения в клетки с нулевыми значениями
- Скорректированная таблица с назначениями для нулевых клеток
- 2.3.2. Особые случаи задачи о назначениях
- Объемы продаж в различных торговых точках для различных продавцов
- Модификация исходных данных и выявление минимальных элементов
- Вычитание минимального элемента по строкам и выявление минимальных элементов во столбцам
- Вычитание минимального элемента по столбцам
- Недопустимые назначения
- Упражнения
- Упражнение 2.8
- Упражнение 2.12
- Тесты Вариант № 1
- К а) б) в) г) акие из приведенных решений являются опорными для следующей системы уравнений:
- Вариант № 2
- К а) . Б) . В) . Г) акие из приведенных решений являются опорными для следующей системы уравнений:
- Фирма производит три вида продукции (а, в, с) для впуска каждого из которых требуется определенное время обработки на всех четырех устройствах I, II, III, IV.
- В какой точке множества допустимых решений достигается минимум целевой функции
- Определить, какая из задач линейного программирования записана в канонической форме?
- 5. Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 3.
- Какие из приведенных решений являются опорными для следующей системы уравнений:
- В какой точке множества допустимых решений достигается максимум целевой функции ;
- О пределить, какая из задач линейного программирования записана в канонической форме?
- Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 4
- К а) б) в) г) акие из приведенных решений являются опорными для следующей системы уравнений:
- В какой точке множества допустимых решений достигается максимум целевой функции ;
- О пределить, какая из задач линейного программирования записана в канонической форме?
- Найти опорный план транспортной задачи, заданной следующей таблицей и вычислить соответствующие транспортные издержки.
- Вариант № 5
- 1 A) ; б) ; в) ; г) . . Какие из приведенных решений являются опорными для следующей системы уравнений:
- Литература