Автоматизация метода нового планирования тпп
Автоматизация этого метода наиболее трудоемка, т.к. при его использовании осуществляется проектирование и документирование ТП на основе введенных данных. По исходным данным (описанию детали и программе выпуска) осуществляется выбор заготовки, построение технологического маршрута, выбор оборудования, осуществляются временные расчеты.
Выбор вида заготовки и методов ее изготовления
Виды заготовок: отливки; прокат; поковки; штамповки; сварные заготовки.
В качестве критериев оптимизации выбора заготовок используют: себестоимость изготовления заготовки С3min; себестоимость механической обработки заготовки для получения детали См min; стоимость отходов металла С0 min.
Алгоритм выбора оптимального метода получения заготовки состоит из следующих шагов:
- Выбор возможных видов заготовки по материалу детали. В зависимости от вида материала (сталь, чугун, сплавы) выбираются методы получения заготовок - отливки, штамповки, прокат, поковки.
- Выбор возможных методов изготовления заготовок исходя из серийности детали (единичная, серийная, крупносерийная, массовая); конструктивной формы летали (цилиндрическая, дисковая, пространственная, корпусная); массы и размеров детали;
- Определение технических характеристик для выбранных видов заготовок (точность, коэффициент использования материала и др.);
- определение себестоимости изготовления заготовки;
- определение себестоимости механической обработки заготовки;
- определение стоимости отходов материала;
- выбор оптимального метода изготовления заготовки для конкретных условий производства.
Выбор технологических баз
Алгоритм выбора технологических баз заключается в следующем. После ввода конфигурации детали осуществляется автоматический расчет площадей всех поверхностей детали и их ранжирование в порядке убывания. В качестве основной базы пользователю предлагается поверхность с наибольшей площадью. Если пользователя устраивает данный вариант, то осуществляется переход к выбору вспомогательных баз, если нет - пользователю предлагается следующая по размеру площади поверхность. Выбор вспомогательных баз осуществляется аналогично из поверхностей, оставшихся после выбора основной базы.
Проектирование технологического маршрута
Данная задача - главная и наиболее трудная. В методе нового планирования используют различные диалоговые подсистемы формирования технологического маршрута.
Исходная информация о детали: общие сведения; сведения о заготовке (поступают из подсистемы выбора заготовки); описание наружных и внутренних поверхностей; допустимые отклонения.
Вся исходная информация кодируется.
База данных подсистемы - наборы последовательностей технологических операций; значения параметров для расчета режимов резания и
времени обработки.
В диалоговом режиме осуществляется подбор технологических операций, расчет и оптимизация режимов резания, расчет затрат времени на изготовление детали, расчет какого-либо критерия оптимальности (например, себестоимости изготовления детали), оптимизация технологического маршрута по выбранному критерию.
Проектирование технологических операций
Каждая технологическая операция, выбранная на этапе проектирования технологического маршрута, проектируется в виде последовательности переходов. Одну и ту же операцию возможно реализовать различной последовательностью отличающихся переходов. Выбор наилучшего варианта осуществляется по критериям: себестоимость операции; время выполнения операции и другим.
Выбор основного оборудования
Оборудование для выполнения операций выбирается в зависимости от намеченного состава операций, габаритов и конфигурации детали, требуемой точности обработки, программы выпуска деталей.
Состав операции (т.е. перечень поверхностей, обрабатываемых на операции) зависит от возможностей оборудования, и наоборот, оборудование выбирается в зависимости от состава операции, поэтому эти задачи решаются параллельно.
База данных о станках содержит следующую информацию: код оборудования в соответствии с классификатором; мощность станка; максимальные размеры сечения резцов, которые можно установить в резцедержателе (для токарного станка); максимальное количество инструментов, которые можно одновременно установить на станке; числа оборотов и др.
Выбор оборудования обычно оптимизируется по критерию стоимости.
Выбор инструмента
Выбор режущего инструмента осуществляется для каждого технологического перехода. Исходные данные: геометрия детали; сведения о заготовке; технологические характеристики применяемого оборудования. Инструмент выбирается из справочной базы, охватывающей все его разновидности.
Последовательность выбора инструмента следующая:
по коду технологического перехода определяется код группы инструмента;
по модели станка выбирается код подгруппы инструмента;
уточняются размеры и другие характеристики инструмента по размерам и форме удаляемого металла, чистоте обработки, материалу заготовки и т.д.
ищется нужный инструмент в базе данных (по сформированным размерам и другим характеристикам).
- Билет 1
- 2.Геометрические преобразования в трехмерной графике. Матрицы преобразования.
- Трехмерные аффинные преобразования
- 3. Составить электрическую схему автоматизированного рабочего места инженера на базе пэвм
- Билет 2
- Билет 3
- 2. Понятие телеобработки. Терминальная и системная телеобработка
- 1. 1 Основные положения телеобработки данных
- 1. 2 Системная телеобработка данных
- 1. 3 Сетевая телеобработка данных
- Билет 4
- 2.2. Структура и состав экспертной системы
- Структура базы знаний
- Механизм логического вывода.
- Модуль извлечения знаний.
- Система объяснения
- Билет 5
- 1. Целочисленные задачи и методы их решения.
- 2. Открытые вычислительные сетевые структуры. Эталонная модель
- 3. Записать алгоритм решения системы линейных уравнений методом итераций
- 2. Открытые вычислительные сетевые структуры. Эталонная модель
- Эталонная модель osi
- Уровень 1, физический
- Уровень 2, канальный
- Уровень 3, сетевой
- Протоколы ieee 802
- 3. Записать алгоритм решения системы линейных уравнений методом итераций
- Билет 6
- 2. Окна в компьютерной графике. Алгоритмы преобразования координат при выделении, отсечении элементов изображения.
- 3. Как определить информацию о памяти (размер озу ...)
- Билет 7
- 1. Понятие структурной организации эвм
- 2. Проекции в трехмерной графике. Их математическое описание. Камера наблюдения.
- Билет 8
- Основные подходы к разработке по. Методы программирования и структура по.
- Билет 9
- 2. Принципы построения и функционирования эвм. Принцип программного управления.
- 3. Алгоритм определения скорости передачи с нгмд на нжмд
- Билет 10
- 1. Организация диалога в сапр
- 2. Видеоконтроллеры, их стандарты для пэвм типа ibm pc.
- 3. Текстуры в машинной графике.
- 3. Текстуры в машинной графике.
- 2. Афинное
- Билет 11
- 3. Реалистичная графика. Обратная трассировка луча.
- Билет 12
- 2. Цвет в машинной графике. Аппроксимация полутонами.
- Алгоритм упорядоченного возбуждения
- 3. Представить алгоритм определения тактовой частоты цп
- Билет 13
- 1. Структурное программирование при разработке программы.
- 2. Понятие критерия оптимального проектирования и его связь с варьируемыми переменными через уравнения математической модели. Постановка задачи оптимального проектирования.
- 3. Представить алгоритм определения быстродействия нгмд в режиме записи данных.
- 2. Понятие критерия оптимального проектирования и его связь с варьируемыми переменными через уравнения математической модели. Постановка задачи оптимального проектирования.
- 3. Представить алгоритм определения быстродействия нгмд в режиме записи данных.
- Билет 14
- 3. Таблицы истинности, совершенные нормальные формы представления булевых функций
- Бинарные функции
- 2. Задачи безусловной и условной оптимизации
- 2. Классификация центральных процессоров Intel и соответствующих локальных и системных шин пэвм типа ibm pc
- 3. Реалистичная графика. Обратная трассировка луча.
- Билет 16
- Построение с использованием отношений
- Построение с использованием преобразований
- 3.Составить алгоритм поиска экстремума функции двух переменных
- Билет 17
- 1.Методы представления знаний в экспертных системах
- 2.4.2 Искусственный нейрон
- 2.Устройства автоматизированного считывания графической информации (сканеры). Конструкция и основные характеристики.
- 3. Составьте программу для определения скорости передачи информации по сети одной эвм к другой.
- Билет 18
- 1. Системно-сетевая телеобработка
- 2. Тестирование программ.
- Билет 19
- 3. Графические форматы. Bmp, gif и jpeg.
- 1. Понятие алгоритма. Свойства. Способы записи.
- 2. Построение реалистичных изображений. Алгоритм построения теней в машинной графике.
- 3. Представить алгоритм определения быстродействия нгмд в режиме чтения данных.
- Билет №21
- 3. Приоритетные методы удаления скрытых поверхностей. Bsp – деревья.
- Билет 22
- 2.Методы проверки работоспособности объектов на этапе проектирования: "наихудшего случая" и имитационного моделирования
- 1. Метод наихудшего случая
- 2. Метод имитационного моделирования
- Билет 23
- 1. Функциональные узлы последовательностного типа: регистры, триггеры, счетчики.
- 2. Назначение, классификация математических моделей и методы их построения. Проверка адекватности математических моделей
- 3. Алгоритмы сжатия графических данных.
- Асинхронный rs – триггер.
- Синхронный rs–триггер.
- Синхронный д-триггер
- Счетный т-триггер.
- Двухступенчатые триггеры.
- Счетчики.
- Классификация счетчиков.
- Регистры
- 2. Назначение, классификация математических моделей и методы их построения. Проверка адекватности математических моделей.
- Билет 24
- 1. Математические модели процессов теплопереноса.
- 1 Вариант
- 2 Вариант-
- 2.Интерполяционные кривые в машинной графике.
- Билет 25
- 1. Трансляторы. Виды. Состав.
- 2. Технические средства диалога машинной графики (световое перо, мышь, шар, джойстик). Конструкция основные характеристики
- 3. Записать алгоритм решения нелинейного уравнения методом Ньютона.
- Билет 26
- 1. Автоматизация методов управления, вариантного, адаптивного и нового планирования в астпп.
- 2. Модели гидродинамики
- 3. Записать алгоритм поиска экстремума функции Розенброка овражным методом.
- Автоматизация метода вариантного планирования
- Автоматизация метода адаптивного планирования тпп
- Автоматизация метода нового планирования тпп
- Оптимизация проектирования сборочных процессов
- 1.Модель гидродинамики идеальной смешение:
- 3. Гидродинамические диффузионные модели.
- 4.Гидродинамическая модель ячеечного типа.
- 3. Записать алгоритм поиска экстремума функции Розенброка овражным методом.
- Билет 27
- Общая интерпретация реляционных операций
- Билет 28
- 1.Понятие языков программирования и их классификация. Жизненный цикл программы.
- 2.Реляционная модель данных. Сравнение с иерархической и сетевой моделями.
- 3.Написать алгоритм вычисления определенного интеграла методом трапеций.
- 2. Реляционная модель данных. Сравнение с иерархической и сетевой моделями.
- 3.Написать алгоритм вычисления определенного интеграла методом трапеций.
- Билет 29
- 2. Декомпозиция отношений. Первая, вторая и третья нормальные формы.
- 3. Записать алгоритм поиска экстремума функции
- Билет 30
- 2. Декомпозиция отношений. Первая, вторая и третья нормальные формы.
- 3. Написать алгоритм вычисления определенного интеграла методом трапеций.
- Билет 31
- Выбор компонентов