Логическое кодирование
Логическое кодирование используется для улучшение потенциальных кодов типаAMI, NRZI или 2Q1B. Логическое кодирование должно заменять длинные последовательности бит, приводящие к постоянному потенциалу, вкраплением единиц. Для логического кодирован характерны два метода: избыточные коды и скрэмблирование.
Избыточные коды
Избыточные коды основаны на разбиении исходной последовательности бит на порции, которые часто называют символами. Затем каждый исходный символ заменяется на новый, который имеет большее количество бит, чем исходный. Например, логический код 4В/5В, используемый в технологиях FDDI и Fast Ethernet, заменяет исходные символы длиной в 4 бита на символы длиной в 5 бит. Поскольку в коде 4В/5В результирующие символы могут содержать 32 битовых комбинации, а исходных символов требуется только 16, то из 32 комбинаций можно отобрать 16 комбинаций, которые не содержат большого количества нулей, а остальные комбинации не использовать (считать запрещенными). Кроме устранения постоянной составляющей и придания коду свойства самосинхронизации, избыточные коды позволяютприемнику распознавать искаженные биты. Если приемник принимает запрещенный код, значит, аа линии произошло искажение сигнала.
Соответствие исходных и результирующих кодов 4В/5В представлено в Табл.1
Символы кода 4В/5В длиной 5 бит гарантируют, что при любом их сочетании на линии не могут встретиться более трех нулей подряд.
Буква В в названии кода означает, что элементарный сигнал имеет 2 состояния — от английского binary — двоичный. Имеются также коды и с тремя состояниями сигнала, например, в коде 8В/6Т для кодирования 8 бит исходной информации используется код из 6 сигналов, каждый из которых имеет три состояния. Избыточность кода 8В/6Т выше, чем кода 4В/5В, так как на 256 исходных комбинаций приходится 36=729 результирующих символов.
Табл.1
-
Исходный код
Результирующий код
Исходный код
Результирующмй код
0000
11110
1000
10010
0001
01001
1001
10011
0010
10100
1010
10110
0011
10101
1011
10111
0100
01010
1100
11010
0101
01011
1101
11011
0110
01110
1110
11100
0111
01111
1111
11101
Использование таблицы перекодировки является очень простой операцией, поэтому этот подход не усложняет сетевые адаптеры и интерфейсные блоки коммутаторов и маршрутизаторов.
Для обеспечения заданной пропускной способности линии передатчик, использующий избыточный код, должен работать с повышенной тактовой частотой. Так, для передачи кодов 4В/5В со скоростью 100 Мб/с передатчик должен работать с тактовой частотой 125 МГц. При этом спектр сигнала на линии расширяется по сравнению со случаем, когда по линии передается чистый, не избыточный код. Тем не менее спектр избыточного потенциального кода оказывается уже спектра манчестерского кода, что оправдывает дополнительный этап логического кодирования, а также работу приемника и передатчика на повышенной тактовой частоте.
Скрэмблирование
Перемешивание данных скрэмблером перед передачей их в линию с помощью потенциального кода является другим способом логического кодирования.
Методы скрэмблирования заключаются в побитном вычислении результирующего кода на основании бит исходного кода и полученных в предыдущих тактах бит результирующего кода. Например, скрэмблер может реалиэовывагь следующее соотношение
Bi = Ai Bi-з Bi-5,
где Bi -двоичная цифра результирующего кода, полученная на i-м такте работы скрэмблера, Ai — двоичная цифра исходного кода, поступающая на i-м такте на вход скрэмблера, Bi-з и Bi-5 — двоичные цифры результирующего кода, полученные на предыдущих тактах работы скрэмблера, соответственно на 3 и на 5 тактов ранее текущего такта, — операция исключающего ИЛИ (сложение по модулю 2).
Например, для исходной последовательности 110110000001 скрэмблер даст следующий результирующий код:
В1 = а1 = 1 (первые три цифры результирующего кода будут совпадать с исходным, так как еще нет нужных предыдущих цифр)
В2 = А2 = 1
В3 = Аз = 0
В4 = А4 В1 = 1 1= 0
В5 =А5 В2 = 1 1 = 0
Вб = А6 Вз В1 = 0 0 1 = 1
В7 = А7 ф В4 В2 = 0 0 1 = 1
В8= А8В5Вз = 000=0
В9 = А9 Вб В4 = 0 1 0 = 1
В10 = А10 В7 В5 = 0 1 0 = 1
В11 = А11 В8 Вб = 0 0 1= 1
В12 = А12 В9 В7 = 1 1 1 = 1
Таким образом, на выходе скрэмблера появится последовательность 110001101111, в которой нет последовательности из шести нулей, присутствовавшей в исходной последовательности.
После получения результирующей последовательности приемник передает ее дескрэмблеру, который восстанавливает исходную последовательность на основании обратного соотношения:
Сi = Вi Вi-з Вi-5 = (Аi Вi-з В1-5) В1-з В1-5 = Аi.
Различные алгоритмы скрэмблирования отличаются количеством слагаемых, дающих цифру результирующего кода, и сдвигом между слагаемыми. Так, в сетях ISDN при передаче данных от сети к абоненту используется преобразование со сдвигами в 5 и 23 позиции, а при передаче данных от абонента в сеть — со сдвигами 18 и 23 позиции.
Существуют и более простые методы борьбы с последовательностями единиц, также относимые к классу скрэмблирования.
Для улучшения кода Вiро1аг АМI используются два метода, основанные на искусственном искажении последовательности нулей запрещенными символами.
На рис. 2.7 показано использование метода В8ZS (Вiро1аг with 8-Zегоs Substitution) и метода НDВЗ High-Density Вiро1аг 3-Zегоs)для корректировки кода АМI. Исходный код состоит из двух длинных последовательностей нулей: в первом случае — из 8, а во втором — из 5.
Рис.2. 7. Коды B8ZS и HDB3. V - сигнал единицы запрещенной полярности; 1*
- сигнал единицы корректной полярности, но заменившей 0 в исходном коде
Код В8ZS исправляет только последовательности, состоящие из 8 нулей. Для этого он после первых трех нулей вместо оставшихся пяти нулей вставляет пять цифр: V-1*-0-V-1*. V здесь обозначает сигнал единицы, запрещенной для данного такта полярности, то есть сигнал, не изменяющий полярность предыдущей единицы, 1* — сигнал единицы корректной полярности, а знак звездочки отмечает тот то в исходном коде в этом такте была не единица, а ноль. В результате на 8 тактах приемник наблюдает 2 искажения — очень маловероятно, что это случилось из-за шума на линии или других сбоев передачи. Поэтому приемник считает нарушения кодировкой 8 последовательных нулей и после приема заменяет их на исходные 8 нулей. Код В8ZS построен так, что его постоянная составляющая равна нулю при любых последовательностях двоичных цифр.
Код НDВЗ исправляет любые четыре подряд идущих нуля в исходной последовательности. Правила формирования кода НDВЗ более сложные, чем кода В8ZS. Каждые четыре нуля заменяются четырьмя сигналами, в которых имеется один сигнал V. Для подавления постоянной составляющей полярность сигнала V чередуется при последовательных заменах. Кроме того, для замены используются два образца четырехтактовых кодов. Если перед заменой исходный код содержал нечетное число единиц, то используется последовательность 000V, а если число единиц было четным — последовательность 1*00 V.
Улучшенные потенциальные коды обладают достаточно узкой полосой частотного спектра для любых последовательностей единиц и нулей, которые встречаются в передаваемых данных. Коды, полученные из потенциального путем логического кодирования, обладают более узким спектром, чем манчестерский, даже при повышенной тактовой частоте. Этим объясняется применение потенциальных избыточных и скрэмблированных кодов в современных технологиях, подобных FDDI, Fast Ethernet, Gigabit Ethernet, ISDN и т. п. вместо манчестерского и биполярного импульсного кодирования.
Дискретная модуляция аналоговых сигналов
Одной из основных тенденций развития сетевых технологий является передача в одной сети как дискретных, так и аналоговых по своей природе данных. Источниками дискретных данных являются компьютеры и другие вычислительные устройства, а источниками аналоговых данных являются такие устройства, как телефоны, видеокамеры, звуко- и видеовоспроизводящая аппаратура. На ранних этапах решения этой проблемы в территориальных сетях все типы данных передавались в аналоговой форме, при этом дискретные по своему характеру компьютерные данные преобразовывались в аналоговую форму с помощью модемов.
Однако по мере развития техники съема и передачи аналоговых данных выяснилось, что передача их в аналоговой форме не позволяет улучшить качество принятых на другом конце линии данных, если они существенно исказились при передаче. Сам аналоговый сигнал не дает никаких указаний ни о том, что произошло искажение, ни о том, как его исправить, поскольку форма сигнала может быть любой, в том числе и такой, которую зафиксировал приемник. Улучшение же качества линий, особенно территориальных, требует огромных усилий и капиталовложений. Поэтому на смену аналоговой технике записи и передачи звука и изображения пришла цифровая техника. Эта техника использует так называемую дискретную модуляцию исходных непрерывных во времени аналоговых процессов.
Дискретные способы модуляции основаны на дискретизации непрерывных процессов как по амплитуде, так и по времени (рис. 2.8). Рассмотрим принципы дискретной модуляции на примере импульсно-кодовой модуляции, ИКМ (Pulse Amplitude Modulation, РАМ), которая широко применяется в цифровой телефонии.
Амплитуда исходной непрерывной функции измеряется с заданным периодом — за счет этого происходит дискретизация по времени. Затем каждый замер представляется в виде двоичного числа определенной разрядности, что означает дискретизацию по значениям функции — непрерывное множество возможных значений амплитуды заменяется дискретным множеством ее значений. Устройство, которое выполняет подобную функцию, называется аналого-цифровым преобразователем (АЦП). После этого замеры передаются по каналам связи в виде последовательности единиц и нулей. При этом применяются те же методы кодирования, что и в случае передачи изначально дискретной информации, то есть, например, методы, основанные на коде B8ZS или 2B1Q.
Рис. 2.8. Дискретная модуляция непрерывного процесса
На приемной стороне линии коды преобразуются в исходную последовательность бит, а специальная аппаратура, называемая цифра-аналоговым, преобразователем (ЦАП), производит демодуляцию оцифрованных амплитуд непрерывного сигнала, восстанавливая исходную непрерывную функцию времени.
Дискретная модуляции основана на теории отображения Найквиста — Котельникова. В соответствии с этой теорией, аналоговая непрерывная функция, переданная в виде последовательности ее дискретных по времени значений, может быть точно восстановлена, если частота дискретизации была в два или более раз выше, чем частота самой высокой гармоники спектра исходной функции.
Если это условие не соблюдается, то восстановленная функция будет существенно отличаться от исходной.
Преимуществом цифровых методов записи, воспроизведения и передачи аналоговой информации является возможность контроля достоверности считанных с носителя или полученных по линии связи данных. Для этого можно применять те же методы, которые применяются для компьютерных данных (и рассматриваются более подробно далее), — вычисление контрольной суммы, повторная передача искаженных кадров, применение самокорректирующихся кодов.
Для качественной передачи голоса в методе ИКМ используется частота квантования амплитуды звуковых колебаний в 8000 Гц. Это связано с тем, что в аналоговой телефонии для передачи голоса был выбран диапазон от 300 до 3400 Гц, который достаточно качественно передает все основные гармоники собеседников. В соответствии с теоремой Найквиста — Котельникова для качественной передачи голоса достаточно выбрать частоту дискретизации, в два раза превышающую самую высокую гармонику непрерывного сигнала, то есть 2 х 3400 = 6800 Гц. Выбранная в действительности частота дискретизации 8000 Гц обеспечивает некоторый запас качества. В методе ИКМ обычно используется 7 или 8 бит кода для представления амплитуды одного замера. Соответственно это дает 127 или 256 градаций звукового сигнала, что оказывается вполне достаточным для качественной передачи голоса.
При использовании метода ИКМ для передачи одного голосового канала необходима пропускная способность 56 или 64 Кбит/с в зависимости от того, каким количеством бит представляется каждый замер. Если для этих целей используется 7 бит, то при частоте передачи замеров в 8000 Гц получаем:
8000 х 7 = 56000 бит/с или 56 Кбит/с;
а для случая 8-ми бит:
8000 х 8 = 64000 бит/с или 64 Кбит/с.
Стандартным является цифровой канал 64 Кбит/с, который также называется элементарным каналом цифровых телефонных сетей.
Передача непрерывного сигнала в дискретном виде требует от сетей жесткого соблюдения временного интервала в 125 мкс (соответствующего частоте дискретизации 8000 Гц) между соседними замерами, то есть требует синхронной передачи данных между узлами сети. При несоблюдении синхронности прибывающих замеров исходный сигнал восстанавливается неверно, что приводит к искажению голоса, изображения или другой мультимедийной информации, передаваемой по цифровым сетям. Так, искажение синхронизации в 10 мс может привести к эффекту «эха», а сдвиги между замерами в 200 мс приводят к потере распознаваемости произносимых слов. В то же время потеря одного замера при соблюдении синхронности между остальными замерами практически не сказывается на воспроизводимом звуке. Это происходит за счет сглаживающих устройств в цифро-аналоговых преобразователях, которые основаны на свойстве инерционности любого физического сигнала — амплитуда звуковых колебаний не может мгновенно измениться на большую величину.
На качество сигнала после ЦАП влияет не только синхронность поступления на его вход замеров, но и погрешность дискретизации амплитуд этих замеров.
В теореме Найквиста — Котельникова предполагается, что амплитуды функции измеряются точно, в то же время использование для их хранения двоичных чисел с ограниченной разрядностью несколько искажает эти амплитуды. Соответственно искажается восстановленный непрерывный сигнал, что называется шумом дискретизации (по амплитуде).
Существуют и другие методы дискретной модуляции, позволяющие представить замеры голоса в более компактной форме, например в виде последовательности 4-битных или 2-битных чисел. При этом один голосовой канал требует меньшей пропускной способности, например 32 Кбит/с, 16 Кбит/с или еще меньше. С 1985 года применяется стандарт CCITT кодирования голоса, называемый Adaptive Differential Pulse Code Modulation (ADPCM). Коды ADPCM основаны на нахождении разностей между последовательными замерами голоса, которые затем и передаются по сети. В коде ADPCM для хранения одной разности используются 4 бит и голос передается со скоростью 32 Кбит/с. Более современный метод, Linear Predictive Coding (LPC), делает замеры исходной функции более редко, но использует методы прогнозирования направления изменения амплитуды сигнала. При помощи этого метода можно понизить скорость передачи голоса до 9600 бит/с.
Представленные в цифровой форме непрерывные данные легко можно передать через компьютерную сеть. Для этого достаточно поместить несколько замеров в кадр какой-нибудь стандартной сетевой технологии, снабдить кадр правильным адресом назначения и отправить адресату. Адресат должен извлечь из кадра замеры и подать их с частотой квантования (для голоса — с частотой 8000 Гц) на цифро-аналоговый преобразователь. По мере поступления следующих кадров с замерами голоса операция должна повториться. Если кадры будут прибывать достаточно синхронно, то качество голоса может быть достаточно высоким. Однако, как мы уже знаем, кадры в компьютерных сетях могут задерживаться как в конечных узлах (при ожидании доступа к разделяемой среде), так и в промежуточных коммуникационных устройствах — мостах, коммутаторах и маршрутизаторах. Поэтому качество голоса при передаче в цифровой форме через компьютерные сети обычно бывает невысоким. Для качественной передачи оцифрованных непрерывных сигналов — голоса, изображения — сегодня используют специальные цифровые сети, такие как ISDN, ATM, и сети цифрового телевидения. Тем не менее для передачи внутрикорпоративных телефонных разговоров сегодня характерны сети frame relay, задержки передачи кадров которых укладываются в допустимые пределы.
- Тема 1. Основные понятия и принципы электросвязи
- Источник
- Получатель
- Существует два типа источников света: одномодовые и многомодовые.
- Кдс канал дальней связи
- При согласованной нагрузке
- Модели дискретного канала Модели дискретного канала (дк) должны адекватно отображать характер преобразования входной битовой последовательности в выходную.
- 1.6.Типы каналов
- 1.6.1.Каналы низкой частоты (нч )
- 1 1 1
- Связь между пропускной способностью канала и его полосой
- 2. Методы передачи данных на физическом уровне
- 2.1. Аналоговая модуляция
- 2.2. Цифровое кодирование
- Потенциальный код без возвращения к нулю
- Манчестерский код
- Логическое кодирование
- 2.3. Асинхронная и синхронная передачи
- 2.4. Коды передачи.
- 2.5. Обнаружение и исправление ошибок
- 2.6. Тактовая синхронизация
- 3. Методы передачи данных канального уровня
- 3.1. Асинхронные протоколы
- Протокол Протокол обмена Протокол
- 3.2.Синхронные символьно-ориентированные(байт-ориентиро- ванные) и бит-ориентированные протоколы
- 2.3 Передача с установлением- и без установления соединения
- 3. 4. Обнаружение и коррекция ошибок
- 3.5. Методы обнаружения ошибок
- 3.6. Методы восстановления искаженных и потерянных кадров
- 3.6. Компрессия данных
- 4. Методы коммутации
- 4.1. Коммутация каналов
- Коммутация каналов на основе разделения времени
- 4.2. Коммутация пакетов
- 4.3. Коммутация сообщений
- Глава 2, с.109 – 130