Общая схема постановки и решения задачи Анализ данных с целью выбора постановки и метода решения
1. Анализ целесообразности кодировки исходных данных. Если исходные данные легко делятся на группы, то их можно кодировать без ущерба информативности (рис. 5.1). Кодировать нецелесообразно, если исходные данные плохо делятся на группы (рис. 5.2).
2. Анализ полноты и качества информации
а) при отсутствующих измерениях необходимо добавить измерения, проведенные дополнительно;
б) рассмотреть вопрос об исключении из МО объекты, имеющие большое количество пропусков;
в) рассмотреть возможность восстановления пропущенных значений путем вычисления (существует много способов заполнения; можно заполнить средним значением, можно опираться на закон распределения).
3. Анализ зависимости свойств, т.е. как с изменением одного меняется другое свойство, с целью минимизации признакового пространства.
4. Анализ расположения объектов в пространстве свойств. Для этого необходимо пере описать исходное пространство до двухмерного и в этом пространстве рассмотреть расположение объектов.
Например, для случая, изображенного на рис. 5.3, может быть применен алгоритм распознавания Голотип-N, для рис. 5.4 — алгоритм Энтропия, для рис. 5.5 — алгоритм Дискриминантная функция, для рис. 5.6 — алгоритмы Дискриминантная функция (но с большим количеством ошибок) или Голотип-N.
Типы расположения объектов:
5. По выбранному алгоритму идет решение задачи.
6. Анализ качества результатов. Для анализа качества алгоритма надо выбрать несколько объектов из МО и сформировать из них МЭ (это могут быть самые «непростые» объекты). Проверяем качество решающего правила. Это правило должно выполнятся при минимуме ошибок 1-го и 2-го рода. Минимум — это фиксированное число, заданное при постановке задачи (например, минимум ошибок приблизительно равен 10%). Если качество алгоритма нас не устраивает, то необходимо возвратится назад к анализу данных, а иначе переходим к материалу распознавания.
7. Интерпретация результатов, т.е. перевод полученных результатов на язык предметной области.
Если результат не устраивает, то возвращаемся к предметной задаче (ее можно сформулировать по разному). Главный этап формализации — формирование исходных данных и построение ТОС.
- Математические методы системного анализа и теория принятия решений Методическое пособие
- 1. Теория принятия решений 4
- 2. Линейное программирование 9
- 3. Нелинейное программирование 42
- 4. Игровые методы обоснования решений 51
- 5. Задачи распознавания образов 62
- Предисловие
- 1. Теория принятия решений
- 1.1. Задачи, связанные с принятием решений Проблема оптимальности.
- Основные понятия и принципы исследования операций.
- Примеры задач исследования операций.
- 1.2. Математические модели операций Искусство моделирования.
- 1.3. Разновидности задач исследования операций и подходов к их решению Прямые и обратные задачи исследования операций.
- Пример выбора решения при определенности: линейное программирование.
- Проблема выбора решений в условиях неопределенности.
- Выбор решения по многим критериям.
- «Системный подход».
- 2. Линейное программирование
- 2.1. Краткое представление о математическом программировании Предмет математического программирования.
- Краткая классификация методов математического программирования.
- 2.2. Примеры экономических задач линейного программирования Понятие линейного программирования.
- Задача о наилучшем использовании ресурсов.
- Задача о выборе оптимальных технологий.
- Задача о смесях.
- Задача о раскрое материалов.
- Транспортная задача.
- 2.3. Линейные векторные пространства Основные понятия линейного векторного пространства.
- Решение систем линейных уравнений методом Гаусса.
- Реализация метода исключения неизвестных в среде Excel.
- Различные схемы реализации метода Гаусса.
- Опорные решения системы линейных уравнений.
- 2.4. Формы записи задачи линейного программирования Основные виды записи злп.
- Каноническая форма представления задачи линейного программирования.
- Переход к канонической форме.
- 2.5. Геометрическая интерпретация задачи линейного программирования Определение выпуклой области.
- Геометрическая интерпретация.
- 2.6. Свойства решений задачи линейного программирования Свойства основной задачи линейного программирования.
- Графический метод решения задачи линейного программирования.
- 2.7. Симплексный метод Идея симплекс-метода.
- Теоретические обоснования симплекс-метода.
- Переход к нехудшему опорному плану.
- Зацикливание.
- Алгоритм симплекс-метода.
- 2.8. Двойственность в линейном программировании Прямая и двойственная задача.
- Связь между решениями прямой и двойственной задач.
- Геометрическая интерпретация двойственных задач.
- 2.9. Метод искусственного базиса Идея и реализация метода искусственного базиса.
- 3. Нелинейное программирование
- 3.1. Общая задача нелинейного программирования Постановка задачи.
- Примеры задач нелинейного программирования (экономические).
- Геометрическая интерпретация задачи нелинейного программирования.
- 3.2. Выпуклое программирование Постановка задачи выпуклого программирования.
- 3.3. Классические методы оптимизации Метод прямого перебора.
- Классический метод дифференциальных исчислений.
- 3.4. Метод множителей лагранжа
- 3.5. Градиентные методы решения задач нелинейного программирования Общая идея методов.
- Метод Франка-Вулфа.
- Метод штрафных функций.
- 4. Игровые методы обоснования решений
- 4.1. Предмет и задачи теории игр Основные понятия.
- Классификация выборов решений.
- Антагонистические матричные игры.
- Чистые и смешанные стратегии и их свойства.
- 4.2. Методы решения конечных игр Упрощение матричной игры.
- Решение матричной игры размерностью 22.
- Графическое решение матричной игры.
- Сведение задач теории игр к задачам линейного программирования.
- 4.3. Задачи теории статистических решений Игры с природой.
- Критерии принятия решений.
- 5. Задачи распознавания образов
- 5.1. Общая постановка задачи распознавания образов и их классификация Проблема распознавания.
- Обсуждение задачи опознавания.
- Язык распознавания образов.
- Априорные предположения — это записанные специальным образом, накопленные знания специалистов.
- Общая постановка задачи.
- Геометрическая интерпретация задачи распознавания.
- Классификация задач распознавания.
- 5.2. Подготовка и анализ исходных данных Общая схема решения задачи.
- Общая схема постановки и решения задачи Анализ данных с целью выбора постановки и метода решения
- 5.3. Методы опознавания образов Основные этапы процесса опознавания образов.
- Методы создания системы признаков.
- Признаковое пространство.
- Сокращение размерности исходного описания.
- Методы построения решающего правила.
- 5.4. Меры и метрики Понятие о сходстве.
- Меры сходства и метрики.
- Примеры функций мер сходства.
- 5.5. Детерминированно-статистический подход к познаванию образов Основные этапы детерминированно-статистического подхода.
- Получение исходного описания.
- Создание системы признаков.
- Сокращение размерности исходного описания.
- Нахождение решающего правила (метод эталонов).
- Коррекция решающего правила.
- 5.6. Детерминированный метод построения решающего правила (метод эталонов) Идея метода эталонов.
- Минимизация числа эталонов.
- Габаритные эталоны.
- Применение метода эталонов к частично пересекающимся образам.
- Дополнительная минимизация числа признаков.
- Квадратичный дискриминантный анализ.
- Распознавание с отказами.
- 5.8. Алгоритм голотип-1 Назначение
- Постановка задачи
- Метод решения задачи.
- Условия применимости.
- Условия применимости.
- 5.10. Алгоритм направление опробования Назначение
- Постановка задачи.
- Метод решения задачи.
- Условия применимости.
- Транспортная задача Математическая постановка.
- Постановка задачи.
- Теоретическое введение.
- Методы нахождения опорного плана транспортной задачи.
- Определение оптимального плана транспортной задачи.
- Заключение.
- Целочисленное программирование Постановки задач, приводящие к требованию целочисленности.
- Постановка задачи.
- Методы отсечения.
- Алгоритм Гомори.
- Первый алгоритм р. Гомори решения полностью целочисленных задач.
- Приближенные методы.
- Заключение.
- Параметрическое программирование Введение.
- Формулировка задачи.
- Теоретическая часть.
- Общая постановка задачи.
- Решение задачи.
- Геометрическая интерпретация задачи.
- Общая постановка задачи.
- Решение задачи.
- Геометрическая интерпретация задачи
- Постановка задачи.
- Решение.
- Геометрическое решение.
- Решение задачи симплекс-методом.
- Результат.
- Некооперативные игры n лиц с ненулевой суммой Введение.
- Теоретическая часть.
- Постановка и решение задачи.
- Заключение.
- Cписок литературы