1. Структура данных типа стек. Логическая структура стека. Машинное представление стека и реализация операций.
Стек - такой последовательный список с переменной длиной, включение и исключение элементов из которого выполняются только с одной стороны списка, называемого вершиной стека. Применяются и другие названия стека - магазин и очередь, функционирующая по принципу LIFO (Last - In - First- Out - "последним пришел - первым исключается"). Примеры стека: винтовочный патронный магазин, тупиковый железнодорожный разъезд для сортировки вагонов.
Основные операции над стеком - включение нового элемента (английское название push - заталкивать) и исключение элемента из стека (англ. pop - выскакивать).
Полезными могут быть также вспомогательные операции:
определение текущего числа элементов в стеке;
очистка стека;
неразрушающее чтение элемента из вершины стека, которое может быть реализовано, как комбинация основных операций:
x:=pop(stack); push(stack,x).
Некоторые авторы рассматривают также операции включения/исключения элементов для середины стека, однако структура, для которой возможны такие операции, не соответствует стеку по определению.
Для наглядности рассмотрим небольшой пример, демонстрирующий принцип включения элементов в стек и исключения элементов из стека. На рис. 4.1 (а,б,с) изображены состояния стека:
а). пустого;
б-г). после последовательного включения в него элементов с именами 'A', 'B', 'C';
д, е). после последовательного удаления из стека элементов 'C' и 'B';
ж). после включения в стек элемента 'D'.
Машинное представление стека и реализация операций
При представлении стека в статической памяти для стека выделяется память, как для вектора. В дескрипторе этого вектора кроме обычных для вектора параметров должен находиться также указатель стека - адрес вершины стека. Указатель стека может указывать либо на первый свободный элемент стека, либо на последний записанный в стек элемент. (Все равно, какой из этих двух вариантов выбрать, важно в последствии строго придерживаться его при обработке стека.) В дальнейшем мы будем всегда считать, что указатель стека адресует первый свободный элемент и стек растет в сторону увеличения адресов.
При занесении элемента в стек элемент записывается на место, определяемое указателем стека, затем указатель модифицируется таким образом, чтобы он указывал на следующий свободный элемент (если указатель указывает на последний записанный элемент, то сначала модифицируется указатель, а затем производится запись элемента). Модификация указателя состоит в прибавлении к нему или в вычитании из него единицы (помните, что наш стек растет в сторону увеличения адресов.
Операция исключения элемента состоит в модификации указателя стека (в направлении, обратном модификации при включении) и выборке значения, на которое указывает указатель стека. После выборки слот, в котором размещался выбранный элемент, считается свободным.
Операция очистки стека сводится к записи в указатель стека начального значения - адреса начала выделенной области памяти.
Определение размера стека сводится к вычислению разности указателей: указателя стека и адреса начала области.
Программный модуль, представленный в примере 4.1, иллюстрирует операции над стеком, расширяющимся в сторону уменьшения адресов. Указатель стека всегда указывает на первый свободный элемент.
const SIZE = ...;
type data = ...;
{==== Программный пример 4.1 ====}
{ Стек }
unit Stack;
Interface
const SIZE=...; { предельный размер стека }
type data = ...; { эл-ты могут иметь любой тип }
Procedure StackInit;
Procedure StackClr;
Function StackPush(a : data) : boolean;
Function StackPop(Var a : data) : boolean;
Function StackSize : integer;
Implementation
Var StA : array[1..SIZE] of data; { Стек - данные }
{ Указатель на вершину стека, работает на префиксное вычитание }
top : integer;
Procedure StackInit; {** инициализация - на начало }
begin top:=SIZE; end; {** очистка = инициализация }
Procedure StackClr;
begin top:=SIZE; end;
{ ** занесение элемента в стек }
Function StackPush(a: data) : boolean;
begin
if top=0 then StackPush:=false
else begin { занесение, затем - увеличение указателя }
StA[top]:=a; top:=top-1; StackPush:=true;
end; end; { StackPush }
{ ** выборка элемента из стека }
Function StackPop(var a: data) : boolean;
begin
if top=SIZE then StackPop:=false
else begin { указатель увеличивается, затем - выборка }
top:=top+1; a:=StA[top]; StackPop:=true;
end; end; { StackPop }
Function StackSize : integer; {** определение размера }
begin StackSize:=SIZE-top; end;
END.
- Билет 1.
- 1. Инкапсуляция, наследование, полиморфизм. Классы, объекты и отношения между ними. Диаграммы логического уровня.
- 2. Симметричные блочные криптоалгоритмы. Сеть Фейстеля.
- Билет 2
- 1. Объявление и реализация классов на языке Паскаль.
- 2. Интерфейс. Пользовательский интерфейс. Классификация пользовательских интерфейсов.
- Билет 3.
- 1. Графы. Основные определения. Машинное представление графов в последовательной памяти и связанной памяти.
- 2. Общая схема симметричной криптосистемы. Алгоритм построения цепочек.
- 3. Написать процедуру, которая выполняет вставку компоненты по заданному ключу.
- Билет 4.
- 1. Нормальный алгоритм Маркова.
- 2. Парадигмы интерфейсов.
- Билет 5.
- 1. Понятие процесса. Состояние процессов. Алгоритмы планирования процессов.
- 2. Общие сведения об ассиметричных криптоалгоритмах. Понятие электронной цифровой подписи.
- 3. Вычислить факториал числа 8.
- Билет 6.
- 1. Файловая системаFat.
- 2. Основные компоненты графических пользовательских интерфейсов.
- 3. Если элементы массивыD[1…5] равны соответственно 4, 1, 5, 3, 2, то значение выражениеD[d[3]]-d[d[5]] равно?
- Билет 7
- 1. Структуры распределенных вычислительных систем(топология, физические и логические элементы сетей эвм)
- 2. Встроенные средства контроля доступа в современных ос.
- 3. Указать к какому классу относится каждый из перечисленныхIPадресов:
- Билет 8
- 1.Трансляторы, компиляторы и интерпретаторы: определение, общая схема работы. Варианты взаимодействия блоков транслятора.
- 2. Эргономические требования, предъявляемые к дизайну пользовательских интерфейсов.
- 3. Указать к какому классу относится каждый из перечисленныхIPадресов:
- Билет 9
- 1. Сети Петри. Моделирование процессов на основе сетей Петри.
- 2. Нормализация таблиц при проектировании баз данных. Нормальные формы (1нф, 2нф, 3нф, нфбк).
- 3. Составить программу, которая формирует очередь, добавляя в неё произвольное количество компонент.
- Билет 10.
- 1. Понятие алгоритма. Интуитивное понятие алгоритма.
- 2. Функции субд.
- Билет 11.
- 1. Структура данных типа стек. Логическая структура стека. Машинное представление стека и реализация операций.
- 2. Принципы и виды отладки программного средства. Автономная отладка программного средства. Комплексная отладка программного средства.
- 3. Дан массив типаwordразмерностьюn. Найти сумму всех элементов, не превышающих заданногоm, далее вывести на экран.
- Билет 12.
- 1. Сети Петри. Моделирование процессов на основе сетей Петри.
- 2. Модели объектов проектирования .
- Билет 13.
- 1. Концепции информационного моделирования. Создание моделей на языкеUml.
- 2. Модели систем управления данными: сетевая, иерархическая, реляционная модель.
- Билет 14.
- 1. Принципы создания компонент в визуальных средах разработки.
- 2. Жизненный цикл программного обеспечения. Модели жизненного цикла по: каскадная, спиральная. Стадии, фазы работы жизненного цикла.
- Билет 15.
- 1. Деревья. Основные определения. Логическое представление и изображение деревьев. Бинарные деревья. Машинное представление деревьев в памяти эвм. Алгоритмы прохождения деревьев.
- 2. Реляционная модель данных. Базовые понятия. Отношения и свойства отношений. Составляющие реляционной модели данных.
- Билет 16.
- 1. Предваренная, скулемовская и клазуальная формы. Логическое следование. Унификация. Алгоритм унификации. Исчисление метода резолюций.
- 2. Структура внешнего описания пс. Качество по. Критерии и примитивы качества.
- Билет 17.
- 1. Понятия прерывания. Виды прерываний. Механизмы прерываний.
- 2. Стадии и этапы разработки базы данных.
- 3. Дан массив типаwordразмерностьюn. Найти сумму всех элементов не прерывающих заданногоm, далее вывести на экран.
- Билет 18.
- 1. Понятие о способах коммутации в распределенных вычислительных системах(коммутации каналов, коммутация пакетов).
- 2. Процессы управления разработкой пс. Структура управления разработки пс. Планирование составление расписания по разработке пс. Аттестация пс.
- 3. НаписатьHtmLкод для отображения в браузере таблицы:
- Билет 19.
- 1. Характеристики транспортного и прикладного уровней стека протоколовTcp/ip.
- 2. Трехуровневая архитектура схем баз данных в субд.
- 3. НаписатьHtmLкод для отображения в браузере таблицы:
- Билет 20.
- 1. Формальные языки и грамматики. Классификация грамматик по Хомскому.
- 2. Методы разработки структуры пс. Восходящая разработка пс. Нисходящая разработка. Конструктивный подход. Архитектурный подход разработки пс.
- Билет 21.
- 1. Конечные автоматы, автомат со стековой памятью (магазин).
- 2. Организация шин.
- Билет 22.
- 1. Сети Петри. Моделирование процессов на основе сетей Петри.
- 2. Организация памяти эвм.
- Билет 23.
- 1. Понятия прерывания. Виды прерываний. Механизмы прерываний.
- 2. Инструментальные среды разработки и сопровождения программных средств и принципы их классификации. Основные классы инструментальных сред разработки и сопровождения программных средств.
- Билет 24.
- 1. Динамическое поведение объектов. Состояния, события, сигналы и сообщения. Модели взаимодействия объектов.
- 2. Типы структур вычислительных машин и систем, перспективы и развития.
- Билет 25
- 1. Структура данных типа стек. Логическая структура стека. Машинное представление стека и реализация операций.
- 2. Основные понятия, определения и назначение сапр
- 3. Составить программу, которая формирует очередь, добавляя в неё произвольное количество компонент.
- Билет 26.
- 1. Сравнительный анализ алгоритмов поиска: линейный, двоичный.
- 2. Факторы, определяющие развитие архитектуры вычислительных систем.
- 3. Составить программу, которая формирует очередь, добавляя в неё произвольное количество компонент.
- Билет 27.
- 1. Рекурсивные функции. Лямбда- исчисление Черча.
- 2. Обеспечивающие системы сапр.
- Билет 28.
- 1. Память. Типы адресов. Виды распределения памяти.
- 2. Архитектура системы команд.
- 3. Найти в массиве максимальный элемент и его индекс. Вывести на печать.
- Билет 29.
- 1. Аппаратура передачи данных (модемы).
- 2. Проектные процедуры в сапр.
- Билет 30.
- 1. Характеристика канального и сетевого уровней стека протоколовTcp/ip.
- 2. Стековая архитектура вычислительных машин.
- Билет 31
- 1. Синтаксический разбор. Классификация методов синтаксического разбора.
- 2. Интеграция систем автоматизации проектирования и управления(cad–cam–capp– системы).
- Билет 32
- 1. Понятие алгоритма. Интуитивное понятие алгоритма.
- 2. Объекты и отношения в программировании. Сущность объектного подхода к разработке программных средств. Особенности объектного подхода к разработке внешнего описания программного средства.
- 3. Указать к какому классу относится каждый из перечисленныхIPадресов:
- Билет 33.
- 1. Объявление и реализация классов на языке Паскаль.
- 2. Архитектура клиент-сервер. Распределенные базы данных.
- Билет 34.
- 1. Характеристики транспортного и прикладного уровней стека протоколовTcp/ip.
- 2. Вычислительные методы решения задач на эвм. Приближения функций. Интерполяция и Метод наименьших квадратов.
- Билет 35.
- 1. Компоненты и интерфейсы. Диаграммы физического уровня.
- 2. Правовые вопросы организации Интернет-сайта.
- Билет 36.
- 1. Структуры данных типа очередь. Логическая структура очереди. Машинное представление очередиFifOи реализация операций. Очереди с приоритетами.
- 2. Моделирование как процесс познания. Математическая модель, понятие вычислительного эксперимента и его структура.
- 3. Составить программу, которая формирует стек, добавляя в него произвольное количество компонент.
- Билет 37
- 1. Улучшенные методы сортировки. Сортировка Шелла, Хоара, улучшенная сортировка выбором. Сортировка с помощью дерева.
- 2. Правовые вопросы, возникающие при использовании электронной почты.
- 3. Составить программу, которая формирует стек, добавляя в него произвольное количество компонент.
- Билет 38.
- 1. Классификация ос. Требования, предъявляемые к ос.
- 2. Понятие системы. Математическое определение системы. Классификация систем.
- Билет 39.
- 1. Понятия файла. Структура файла. Реализация файлов
- 2. Виды объектов авторского права. Виды авторских прав. Программы для эвм и базы данных, как объектов авторского права.
- 3. Подсчитать сколько раз в массиве встречается заданный элементN. Вывести количество данных вхождений.
- Билет 40.
- 1. Характеристики локальных вычислительных сетей типаEthernet.
- 2. Нормальный алгоритм Маркова.
- 3. Написать кодcssфайла в котором при помощи псевдоклассов описывается поведение ссылок отличное от стандартного.
- Билет 41.
- 1. Взаимодействие узлов с использованием стека протоколовTcp/ip.
- 2. Объекты патентного права.
- 3. Указать к какому классу относится каждый из перечисленныхIPадресов:
- Билет 42.
- 1. Машина Тьюринга.
- 2. Уровни моделирования. Общая характеристика и особенности. Моделирование на микроуровне. Обобщенная модель и моделирование тепловых систем (краевая задача для уравнения теплопроводности)
- 2) Уравнение теплопроводности
- Билет 43.
- 1. Архитектура системы команд.
- 2. Уровни моделирования. Моделирование на макроуровне. Типичная общая модель и моделирование электрических систем.
- Билет 44.
- 1. Структуры данных типа очередь. Логическая структура очереди. Машинное представление очередиFifOи реализация операций. Очереди с приоритетами.
- 2. Принципы построения современных эвм.
- 3. Найти в массиве максимальный элемент и его индекс. Вывести на печать.
- Билет 45.
- 1. Характеристика канального и сетевого уровней стека протоколовTcp/ip.
- 2. Численное решение задачи Коши для обыкновенных дифференциальных уравнений. Метод Эйлера. Одношаговые и многошаговые методы.
- 3. Указать к какому классу относится каждый из перечисленныхIPадресов: