флеров
Функциональная полнота систем функций алгебры логики
Выше мы видели, что всякая функция алгебры логики может быть выражена в виде формулы через элементарные функции , xy, xy. В связи с этим возникает вопрос, какими свойствами должна обладать система функций, чтобы через функции этой системы можно было выразить произвольную функцию алгебры логики? Мы собираемся дать достаточно исчерпывающий ответ на этот вопрос и показать, что таким свойством обладают и другие системы функций.
Прежде всего уточним, какими средствами из имеющейся системы функций можно получать новые функции. Новые функции получаются из имеющихся в заданной системе функций с помощью операций замены переменных и суперпозиции. Опишем эти две операции.
Содержание
- Журавлев ю.И., Флеров ю.А. Дискретный анализ
- Элементы комбинаторики.
- Введение
- Два принципа комбинаторики
- Функции и размещения
- Числа Стирлинга первого рода
- Циклическая структура перестановок
- Упорядоченные размещения.
- Сочетания и биномиальные коэффициенты.
- Производящие функции
- Биномиальные коэффициенты
- Исчисление конечных разностей
- Разложения
- Полиномиальные коэффициенты
- Разбиения
- Число разбиений
- 1. Формула 1.
- 2. Формула 2.
- Числа Белла.
- Принцип включений - исключений
- Задача о числе беспорядков (Задача о встречах)
- Количество сюръективных отображений
- Перестановки с ограничениями на местоположение
- Системы представителей множеств
- Системы различных представителей
- Системы общих представителей
- Функции алгебры логики
- Элементарные высказывания
- Элементарные логические операции (функции)
- Алгебраические свойства элементарных операций
- Разложение функций алгебры логики по переменным
- Функциональная полнота систем функций алгебры логики
- 1. Замена переменных.
- 2. Суперпозиция функций алгебры логики.
- Замкнутые классы.
- Критерий полноты
- Представление о результатах Поста
- Элементы теории графов
- Степени вершин
- О машинном представлении графов.
- Поиск в графе
- Поиск в глубину в графе
- Поиск в ширину в графе
- Пути и циклы
- Связность
- Деревья
- Остовное дерево (каркас)
- Эйлеровы пути и циклы
- Aлгоритм построения эйлерова цикла
- Гамильтоновы пути и циклы
- Нахождение кратчайших путей в графе
- Алгоритм нахождения расстояния от источника до всех остальных вершин в ориентированном графе с неотрицательными весами ребер
- Максимальный поток в сети
- Рекомендуемая литература.
- Оглавление