Сочетания и биномиальные коэффициенты.
Простейшими комбинаторными объектами являются сочетания и биномиальные коэффициенты.
Пусть дано конечное множество X , содержащее n различных элементов. Нас интересует количество различных k- элементных подмножеств, которые можно образовать из элементов множества X. Два подмножества считаются различными, если они различаются хотя бы одним входящим в них элементом.
Такие подмножества называются сочетаниями из m элементов по k элементов и обозначаются , а их количество обозначается или . Обозначение читается как “число сочетаний из m по k “ или просто “из m по k”.
Утверждение 1.8. Число различных подмножеств из k элементов множества A, |A |= m есть
Первое доказательство.
Построим таблицу T всех строго возрастающих (монотонных, без повторений букв) слов длины k в алфавите A из m букв.
Пример.
Пусть множество A состоит из пяти различных элементов:
A= {a,b,c,d,c} .
Положим k=3.
Тогда таблица T всех строго возрастающих слов длины 3 в алфавите A имеет следующий вид:
abc acd adc
abd ace
abe
bcd bde
bce
cde
Переставим буквы в каждом слове всеми возможными способами и обозначим получившуюся таблицу T. T - множество слов без повторения букв длины k в алфавите A.
В таблице T нет пропусков: каждое слово длины k появится в таблице T.
В таблице T нет повторений: два слова из T либо получены из одного слова T и тогда отличаются порядком букв, либо из разных слов T и тогда различаются буквами.
По утверждению 1 .2:
| T | = [ m ]k .
Поэтому
| T | = [ m ]k / k! .
Таким образом, окончательно получаем
Второе доказательство.
Определим множество (иногда обозначаемое как-нибудь иначе) как множество всех k-элементных подмножеств (или k-подмножеств) множества S и положим по определению (игнорируя прошлое использование символа ). Подсчитаем двумя способами число N(n, k) способов, которыми можно выбрать k-подможество T множества S, а затем линейно упорядочить его элементы. Множество T мы можем выбрать способами, а затем k способами выбрать первый по порядку элемент множества T, k-1 способом - второй элемент T и так далее. Таким образом
.
С другой стороны, можно взять n способами любой элемент множества S в качестве первого, n-1 способом любой из оставшихся элементов в качестве второго и так далее, k-ый элемент можно выбрать из оставшихся n - k + 1 способом. Следовательно,
N(n, k) = n(n - 1) ... (n - k + 1).
Итак, мы дали комбинаторное доказательство того, что
,
и, следовательно,
.
Прежде, чем двигаться дальше сделаем небольшое отступление, связанное с введением понятия производящих функций.
-
Содержание
- Журавлев ю.И., Флеров ю.А. Дискретный анализ
- Элементы комбинаторики.
- Введение
- Два принципа комбинаторики
- Функции и размещения
- Числа Стирлинга первого рода
- Циклическая структура перестановок
- Упорядоченные размещения.
- Сочетания и биномиальные коэффициенты.
- Производящие функции
- Биномиальные коэффициенты
- Исчисление конечных разностей
- Разложения
- Полиномиальные коэффициенты
- Разбиения
- Число разбиений
- 1. Формула 1.
- 2. Формула 2.
- Числа Белла.
- Принцип включений - исключений
- Задача о числе беспорядков (Задача о встречах)
- Количество сюръективных отображений
- Перестановки с ограничениями на местоположение
- Системы представителей множеств
- Системы различных представителей
- Системы общих представителей
- Функции алгебры логики
- Элементарные высказывания
- Элементарные логические операции (функции)
- Алгебраические свойства элементарных операций
- Разложение функций алгебры логики по переменным
- Функциональная полнота систем функций алгебры логики
- 1. Замена переменных.
- 2. Суперпозиция функций алгебры логики.
- Замкнутые классы.
- Критерий полноты
- Представление о результатах Поста
- Элементы теории графов
- Степени вершин
- О машинном представлении графов.
- Поиск в графе
- Поиск в глубину в графе
- Поиск в ширину в графе
- Пути и циклы
- Связность
- Деревья
- Остовное дерево (каркас)
- Эйлеровы пути и циклы
- Aлгоритм построения эйлерова цикла
- Гамильтоновы пути и циклы
- Нахождение кратчайших путей в графе
- Алгоритм нахождения расстояния от источника до всех остальных вершин в ориентированном графе с неотрицательными весами ребер
- Максимальный поток в сети
- Рекомендуемая литература.
- Оглавление