Взаимная индуктивность и магнитный сердечник (к)
Формат схем МС:
Атрибут PART: <имя>
Атрибут INDUCTORS: <имя индуктивности>
Атрибут COUPLING: коэффициент связи>
Атрибут MODEL: [имя модели]
Порядок перечисления имен индуктивностей Lyyy, Lzzz ... безразличен, знак взаимной индуктивности определяется положительными направлениями токов индуктивностей относительно начал обмоток. Параметром взаимной индуктивности является коэффициент связи.
На одном сердечнике помещается одна или несколько обмоток с именами Lyyy, Lzzz... Все обмотки имеют одинаковый <коэффициент связи>. Здесь возможны 2 варианта: а) магнитосвязанными могут быть линейные индуктивности (без сердечника); нелинейные индуктивности с нелинейным магнитным сердечником, определяемым параметрами модели CORE.
a) Магнитосвязанные линейные индуктивности.
Коэффициент связи Kijдвух обмоток (i, j) определяется выражением:
где Li, Lj— индуктивности обмоток;Mij— их взаимная индуктивность. Напряжение на катушкеLi, с учетом взаимной индукции определяется выражением:
,
Где Ii— ток втекающий в вывод (+) обмотки (помечен на схеме точкой). В этом случае при вводе в схему связанных индуктивностей посредством вставки элементаK, в открывающемся окне параметров задается лишь позиционное обозначение сердечникаKN, позиционные обозначения всех катушек индуктивности (INDUCTORS) с которыми он связан и коэффициент связи (COUPLING) (см. рис. 3.4., а). Имя модели сердечника при этом не вводится.
б) Магнитосвязанные катушки с нелинейным магнитным сердечником.При описании каждой обмотки Lyyy..., упомянутой в составе сердечника в позицииINDUCTORS, изменяется смысл параметра <значение>. Т.е. численное значение, задаваемое в позицииVALUEокна параметров катушки индуктивности теперь определяет не индуктивность, а число витков соответствующей обмотки сердечника. В этом случае в позицииMODELокна параметров сердечникаKвводится имя модели нелинейного магнитного сердечника (возможно из открывающегося в этом же окне списка, см. рис. 3.4., б). Модель магнитного сердечника представляет собой вариант модели Джилса-Атертона, в котором безгистерезисная кривая намагниченности ферромагнетика является гиперболической функцией напряженности магнитного поляH(coth).
а) б)
Рис. 3.4. Окна задания параметров сердечника: а) — линейного; б— нелинейного
Следовательно, в случае использования нелинейного магнитного сердечника величина, задаваемая в позиции VALUEне может быть выражением, а должна быть целым положительным числом.
Параметры модели магнитного сердечника приведены в табл. 3.4. В SPICE используется подобная модель для LEVEL=2, с тем лишь отличием, что безгистерезисная кривая имеет другую более простую аналитическую зависимость от напряженности магнитного поля H(см. лекции ММЭ).
Таблица 3.4. Параметры модели магнитного сердечника
Обозначение | Параметр | Размерность | Значение по умолчанию |
AREA | Площадь поперечного сечения магнитопровода | см2 | 1 |
PATH | Средняя длина магнитной силовой линии | см | 1 |
GAP | Ширина воздушного зазора | см | 0 |
MS | Намагниченность насыщения | А/м | 400103 |
A | Параметр формы безгистерезисной кривой намагничивания | А/м | 25 |
С | Постоянная упругого смещения доменных границ |
| 0,001 |
К | Постоянная необратимой деформации доменных стенок | А/м | 25 |
ALPHA | Параметр эффективности поля | — | 2E-5 |
Основные уравнения для используемого варианта модели Джилса-Аттертона:
N— количество витков выбранной обмотки сердечника
Ma(H) — зависимость безгистерезисной намагниченности от напряженности магнитного поляH(безгистерезисная кривая намагничивания)
H— напряженность магнитного поля
HE— эффективная напряженность магнитного поля
B— магнитная индукция в сердечнике
M— намагниченность ферромагнетика сердечника
I— ток, протекающий через выбранную обмотку сердечника
V— напряжение на клеммах катушки сердечника
Следует отметить что расчеты нелинейных магнитных элементов программе MICROCAP-7 осуществляютсяне в системе СИ. В программе принята следующая система единиц: намагниченность М — [A/м], магнитная индукцияB— [Гаусс], напряженность магнитного поляH— [Эрстед]. Расчеты в программе осуществляются по формулам:
Основное дифференциальное уравнение Джилса-Атертона, связывающее изменение намагниченности с величиной напряженности Н и предысторией системы:
;
;
См. пример схемуCORE3 из каталога COMPONENTS\PASSIVE COMPи ее анализ.
Yandex.RTB R-A-252273-3- Кафедра
- Пакет программ схемотехнического анализа MicroCap-7 Литература
- Основные сведения о программе
- Введение
- Установка системы
- Состав программного пакета mc7
- Корневой каталог мс7:
- Подкаталоги data и library
- Работа с меню системы
- Основные способы общения с программой
- Основные команды меню
- Форматы задания компонентов
- Общие сведения
- Переменные
- Математические выражения и функции
- Интегрально-дифференциальные операторы (X,y,u— действительные переменные)
- Операции отношения и логические операции (X,y— действительные величины,b— логическое выражение)
- Операции с логическими переменными (состояниями цифровых узлов схемы)
- Операторы обработки сигналов (u,V— действительные сигналы при анализе переходных процессов,s— спектры сигналов)
- Параметры моделей
- Правила использования выражений и переменных
- Текстовые директивы
- .Define — присвоение значений идентификаторам переменных
- .Include — включение текстового файла
- .Lib — подключение файлов библиотек компонентов
- .Macro — задание определений макросов
- .Model — описание модели компонента
- .Nodeset — задание начального приближения режима по постоянному току
- .Parameters — задание параметров схем
- Модели аналоговых компонентов
- Общие сведения о моделях компонентов
- Пассивные компоненты (Passive components)
- Резистор (Resistor)
- Конденсатор (Capacitor)
- Индуктивность (Inductor)
- Взаимная индуктивность и магнитный сердечник (к)
- Трансформатор (Transformer)
- Линия передачи (Transmission line)
- Диод (Diode) и стабилитрон (Zener)
- Источники сигналов (Waveform sources)
- Источник синусоидального напряжения (Sine source)
- Независимые источники напряжения и тока (V и I) сложной формы формата spice
- Источник напряжения, задаваемый пользователем (User source)
- Линейные и нелинейные зависимые источники
- Зависимые источники линейные и полиномиальные (Dependent Sources) Линейные зависимые источники
- Полиномиальные зависимые источники
- Линейные управляемые источники, задаваемые преобразованиями Лапласа (Laplace Sources) и z-преобразованиями (z Transform Sources)
- Функциональные источники сигналов (Function Sources)
- Смесь (Miscellaneous)
- Ключ (Switch)
- Ключ, управляемый напряжением (s)
- Ключ, управляемый током (w)
- Устройство выборки-хранения SampleandHold
- Стрелки (Arrow) и контакты (Bubble)
- Активные компоненты (Active components)
- Биполярный транзистор (Bipolartransistor—bjt)
- Арсенид-галлиевый полевой транзистор (GaAsFet)
- Операционный усилитель (орамр)
- Выполнение моделирования
- Задание параметров моделирования dc Analysis Limits
- Использование клавиши р
- Меню режимов расчета передаточных функций dc
- Задание параметров моделирования ac Analysis Limits (f9,)
- Использование клавиши р
- Меню режимов расчета частотных характеристик ас
- Вывод численных данных
- Расчет уровня внутреннего шума
- Задание параметров моделирования Transient Analysis Limits (f9,)
- Использование клавиши р
- Меню режимов расчета переходных процессов transient
- Задание начальных значений и редактирование переменных состояния
- Вывод численных данных
- Многовариантный анализ
- Параметрическая оптимизация
- Статистический анализ по методу Монте-Карло
- Просмотр и обработка результатов моделирования
- Окно отображения результатов моделирования
- Панорамирование окна результатов моделирования
- Масштабирование окна результатов моделирования
- Режим электронной лупы Scope
- Функции раздела performance
- Вывод графиков характеристик в режиме Probe
- Анимация и трехмерные графики