Правила использования выражений и переменных
1. Все параметры компонентов могут быть функцией времени Т (при анализе переходных процессов), произвольных напряжений и токов, температуры TEMP, комплексных переменной s и z (при анализе частотных характеристик).
Приведем примеры:
1.0/(1.0+.001*s)— передаточная функция фильтра низких частот, заданная с помощью преобразования Лапласа;
exp(-T/.5)*sin(2*PI*10*T)— функциональный источник затухающего гармонического сигнала с частотой 10 Гц;
5.0pF*(1+2e-6*T)— емкость конденсатора, зависящая от времени;
4.7K*(1+.3*V(P,M))— сопротивление резистора, зависящее от напряжения;
2.6 uH*(1+2*(TEMP-273)^2)— индуктивность, зависящая от температуры;
V(VCC)*I(VCC)— мгновенная мощность источника напряжения VCC;
SUM(V(VCC)*I(VCC),T)— энергия источника VCC на интервале времени от 0 до Т;
FFT(V(A)+V(B))— преобразование Фурье от V(A)+V(B));
RMS(V(Out))— текущее среднеквадратическое значение напряжения V(Out));
IM(V(7))— мнимая часть комплексного напряжения в узле 7;
MAG(VCE(Q1)*IC(Q1))— модуль комплексной мощности, выделяемой на биполярном транзисторе Q1 при анализе частотных характеристик;
5*(Т>10 ns AND T<20 ns)— одиночный импульс с амплитудой 5В на интервале времени 10...20 нс;
5*((Т mod 50)>10 AND (T mod 50)<20)— импульс с амплитудой 5 В на интервале времени от 10 с до 20 с, период 50 с.
2. Значения операторов отношения и булевых операторов равно1.0, если они истинны, и 0.0, если они ложны.
3. Интегро-дифференциальные операторы (AVG, DEL, RMS и SUM…) могут использоваться только при выводе данных и не могут использоваться в выражениях для параметров.
4. ONOISE и INOISE могут использоваться только при АС анализе и их нельзя использовать в выражениях в совокупности с другими величинами, например с напряжениями.
5. При вычислении преобразования Фурье FFT в режиме АС (при этом рассчитываются импульсные характеристики как функции времени Т) графики других переменных (напряжений, токов и т. п.) строятся неправильно.
Поэтому их следует выводить на экран по отдельности в разных сеансах моделирования.
6. В АС анализе все промежуточные вычисления выполняются с комплексными величинами. Однако при построении графиков указание имени переменной означает построение графика ее модуля.
Например, указание имени переменной V(1) эквивалентно использованию функции вычисления модуля комплексной величины MAG(V(1)). И более того, спецификация выражения V(1)*V(2) приведет к построению модуля произведения двух комплексных напряжений. Для вывода мнимой части произведения используется запись IM(V(1)*V(2)), действительной части — RE(V(1)*V(2)).
7. При моделировании в режимах АС и DC значение переменной Т (время) полагается равной нулю. При расчете переходных процессов и в режиме DC равной нулю полагается переменная F(частота).
8. В выражениях для преобразования Лапласа передаточных функций может использоваться только символ S для обозначения комплексной переменной.
При отсутствии в выражении для такой передаточной функции символа S выдается сообщение об ошибке. Поэтому преобразования Лапласа нельзя использовать для задания линейных блоков с постоянным коэффициентом передачи — в этих целях используйте другие типы управляемых источников сигналов.
9. Комплексные величины можно использовать только в следующих функциях:+, –, *, /, sqrt, pow, In, log, exp, cosh, sinh, tanh, coth.
В функциях другого типа комплексные величины заменяются их действительными частями, например, функция действительного переменного SIN при наличии комплексного аргумента С1 равна sin(C1)=sin(RE(C1)).
10. Перед выполнением моделирования или составлением списка электрических соединений программа МС7 вычисляет значения всех операторов .DEFINE.
В связи с этим применение этих операторов внутри оператора .MODEL могут привести к ошибке. Пусть, например, имеются два оператора
.define BF 111
.model Q1 NPN (BF=50 ...) В результате подстановки в оператор .MODEL определения
define BF 111 он приобретет неожиданный совершенно ошибочный вид:
.model Q1 NPN (111=50 ...)
Поэтому применение определений .DEFINE в директиве .MODEL недопустимо! В этих целях можно использовать идентификатор промежуточной переменной. В рассматриваемом примере это может быть:
.define VALUE 111
.model Q1 NPN (BF= VALUE ...)
Тогда после подстановки оператор .MODEL приобретет правильный вид:
.model Q1 NPN(BF=111 ...)
11. Помните, что выражения в операторах определения переменных .DEFINE понимаются буквально.Пусть, например, имеются два определения
.define A 4+C
.define В А*Х
Следует иметь в виду, что выражение 4+С не подразумевается заключенным в скобки (4+С). Поэтому величина В равна 4+С*Х. Если же величина В должна быть равной (4+С)*Х, скобки нужно проставить в определении величины А:
.define А (4+С)
Yandex.RTB R-A-252273-3- Кафедра
- Пакет программ схемотехнического анализа MicroCap-7 Литература
- Основные сведения о программе
- Введение
- Установка системы
- Состав программного пакета mc7
- Корневой каталог мс7:
- Подкаталоги data и library
- Работа с меню системы
- Основные способы общения с программой
- Основные команды меню
- Форматы задания компонентов
- Общие сведения
- Переменные
- Математические выражения и функции
- Интегрально-дифференциальные операторы (X,y,u— действительные переменные)
- Операции отношения и логические операции (X,y— действительные величины,b— логическое выражение)
- Операции с логическими переменными (состояниями цифровых узлов схемы)
- Операторы обработки сигналов (u,V— действительные сигналы при анализе переходных процессов,s— спектры сигналов)
- Параметры моделей
- Правила использования выражений и переменных
- Текстовые директивы
- .Define — присвоение значений идентификаторам переменных
- .Include — включение текстового файла
- .Lib — подключение файлов библиотек компонентов
- .Macro — задание определений макросов
- .Model — описание модели компонента
- .Nodeset — задание начального приближения режима по постоянному току
- .Parameters — задание параметров схем
- Модели аналоговых компонентов
- Общие сведения о моделях компонентов
- Пассивные компоненты (Passive components)
- Резистор (Resistor)
- Конденсатор (Capacitor)
- Индуктивность (Inductor)
- Взаимная индуктивность и магнитный сердечник (к)
- Трансформатор (Transformer)
- Линия передачи (Transmission line)
- Диод (Diode) и стабилитрон (Zener)
- Источники сигналов (Waveform sources)
- Источник синусоидального напряжения (Sine source)
- Независимые источники напряжения и тока (V и I) сложной формы формата spice
- Источник напряжения, задаваемый пользователем (User source)
- Линейные и нелинейные зависимые источники
- Зависимые источники линейные и полиномиальные (Dependent Sources) Линейные зависимые источники
- Полиномиальные зависимые источники
- Линейные управляемые источники, задаваемые преобразованиями Лапласа (Laplace Sources) и z-преобразованиями (z Transform Sources)
- Функциональные источники сигналов (Function Sources)
- Смесь (Miscellaneous)
- Ключ (Switch)
- Ключ, управляемый напряжением (s)
- Ключ, управляемый током (w)
- Устройство выборки-хранения SampleandHold
- Стрелки (Arrow) и контакты (Bubble)
- Активные компоненты (Active components)
- Биполярный транзистор (Bipolartransistor—bjt)
- Арсенид-галлиевый полевой транзистор (GaAsFet)
- Операционный усилитель (орамр)
- Выполнение моделирования
- Задание параметров моделирования dc Analysis Limits
- Использование клавиши р
- Меню режимов расчета передаточных функций dc
- Задание параметров моделирования ac Analysis Limits (f9,)
- Использование клавиши р
- Меню режимов расчета частотных характеристик ас
- Вывод численных данных
- Расчет уровня внутреннего шума
- Задание параметров моделирования Transient Analysis Limits (f9,)
- Использование клавиши р
- Меню режимов расчета переходных процессов transient
- Задание начальных значений и редактирование переменных состояния
- Вывод численных данных
- Многовариантный анализ
- Параметрическая оптимизация
- Статистический анализ по методу Монте-Карло
- Просмотр и обработка результатов моделирования
- Окно отображения результатов моделирования
- Панорамирование окна результатов моделирования
- Масштабирование окна результатов моделирования
- Режим электронной лупы Scope
- Функции раздела performance
- Вывод графиков характеристик в режиме Probe
- Анимация и трехмерные графики