logo search
Сборник методов нейроинформатики

1. Постановка проблемы

Функция F на Rзадана набором своих значений в случайных точках пространства . Построим ее аппроксимацию при помощи комбинаций- функций из набора, гладких и непрерывно дифференцируемых. Тогда

- ошибка аппроксимации F функцией;

- ошибка предыдущего шага аппроксимации

Аппроксимация может вестись не только подбором коэффициентов, но и выбором на каждом шаге функций из. Таким образом, может быть получено разложение функции F в сходящийся ряд вида:

Решение задачи аппроксимации может быть получено путем минимизации функционала качества, соответствующего квадрату отклонения:

,

Задача состоит в приближении функции F, заданной исходной выборкой точек, при помощи нейросети-предиктора с неизвестным заранее количеством нейронов и видом функции, используемой в преобразователе каждого из нейронов.

Решение может быть представлено как итерационный процесс, состоящий из следующих шагов:

- Подключение нового нейрона;

- Оптимизация ошибки предсказания значений в заданных точек для текущего нейрона путем подбора функции преобразователя, ее параметров и весов синапсов;

Если заданная точность достигнута, то процесс можно остановить, в противном случае - процесс повторяется сначала, причем параметры уже обученных нейронов фиксируются, так что каждый новый нейрон обучается вычислять погрешность, оставшуюся от предыдущих.

Количество итераций процесса исчерпания ошибки может быть также ограничено из условия превышения нижней оценки константы Липшица для конструируемой нейронной сети над верхней оценкой выборочной константы Липшица.