4.3. Прогнозирование возможного изменения ландшафтных зон и секторов континентальности
Для прогноза крупных зональных классов – ландшафтных зон или зонобиомов – разрабатываются модели глобального уровня [19,20,22]. Считается, что изменения температуры января и июля наиболее доступны для долгосрочного прогноза, а поскольку по ним можно вычислить индекс континентальности, то можно предложить последний как один из наиболее доступных производных параметров. Известно, что с континентальностью связана повторяемость воздушных масс океанического и континентального происхождения и режимы тепла и влаги. Эксперты предсказывают, что в наших широтах средняя температура января увеличится на 3-4°С, а июля – на 1-2°С, и эти данные согласуются у различных авторов. Это означает, что континентальность снизится, и режимы тепла будут менее суровы в году.
Труднее предсказать режим увлажнения. Поэтому в данной работе взято некоторое приближение сценариев. Так, предполагается, что количество осадков холодного периода может увеличиться на 10-30 мм, а количество годовых осадков – на 30-50 мм. И эти все значения меняются по долготе (см. Таблица 2).
Еще хуже дело обстоит с учетом взаимодействия систем в силу не только прямых, но и обратных связей климат–растительность, и множества косвенных взаимодействий (лес – почва, лес – насекомые, пожары и др. экстремальные события). Разработка общей концепции прогноза наземных экосистем еще далека от завершения.
Задача данного исследования – сделать первый шаг к прогнозу изменения ландшафтного покрова на основе базы данных по климату и растительности, опираясь на фундаментальную концепцию природной зональности Докучаева–Берга–Григорьева–Будыко. Учитывая характер базы данных, следует ограничиться точечным прогнозом, т.е. исследованием возможности смены секторно-зональной принадлежности конкретных точек (метеостанций) согласно одному из сценариев климата на 2030 год. Весьма актуальной представляется возможность выявления тех территорий, которые могут оказаться особенно подвергнутыми риску с Таблица 2. Прогноз изменения климатических параметров по секторам континентальности на 2030 год Климатические Параметры Континентальный и резко континентальный секторы Крайне Континентальный сектор Температура января + 3° + 4° Температура июля + 1° + 2° Cумма осадков за холодный период года + 30 мм + 10 мм Cумма осадков за год + 50 мм + 30 мм
Для решения задачи прогноза смены ландшафтных зон из обучающей и тестирующей выборок для нейронных сетей исключены четыре параметра, которые пока недоступны для прогноза:
Коэффициент увлажнения.
Дефицит влажности.
Сумма температур за период выше 5°С.
Сумма температур за период выше 10°С.
Итак, в обучающей и тестируемой выборках осталось пять параметров:
Индекс континентальности.
Средняя температура января.
Средняя температура июля.
Сумма осадков за холодный период года.
Сумма осадков за год.
Для прогноза смены ландшафтных зон и секторов континентальности на 2030г. выбрана описанная ранее последовательно уточняемая классификационная модель ландшафтных зон (без бинарной классификации зон) и деление на три сектора континентальности. На выборке из оставшихся пяти параметров для каждой классификационной модели были обучены наборы нейросетей, и для каждой классификационной модели было выбрано по одной нейросети с наибольшим процентом правильных ответов:
Для классификации ландшафтных зон без лесостепи – 83% правильных ответов. При тестировании к лесотундровой зоне ошибочно отнесены 5 из 54 станций лесной зоны, к лесной зоне – 1 из 6 станций лесотундровой зоны и 1 из 4 станций степной зоны, к степной зоне – 3 из 54 станций лесной зоны.
Для классификации леса, лесостепи и степи – 80%. При тестировании к лесной зоне ошибочно отнесены 2 из 8 метеостанций лесостепной зоны и 1 из 6 станций степной зоны, к лесостепной зоне – 4 из 46 станций лесной зоны и 2 из 6 станций степной зоны, к степной зоне – 2 из 8 станций лесостепной зоны и 1 из 6 станций степной зоны.
Для классификации секторов континентальности на равнине – 82%. При тестировании к континентальному сектору ошибочно отнесены 3 из 20 станций резко континентального сектора, к резко континентальному сектору – 2 из 15 станций континентального сектора и 3 из 27 станций крайне континентального сектора, к крайне континентальному сектору – 2 из 20 станций резко континентального сектора.
Для классификации секторов в горах – 94%, к резко континентальному сектору ошибочно отнесена 1 из 4 метеостанций крайне континентального сектора.
Самыми информативными параметрами при прогнозе оказались следующие:
Для ландшафтных зон без лесостепи – средняя температура января, осадки холодного периода и сумма осадков за год.
Для ландшафтных зон с лесостепью – осадки холодного периода и сумма осадков за год.
Для секторов континентальности на равнине – осадки холодного периода, сумма осадков за год и индекс континентальности.
Для секторов континентальности в горах – средняя температура июля, индекс континентальности и средняя температура января.
При обучении нейросетей для прогноза на основании пяти параметров распознаваемость классов, в общем, не ухудшилась: понижение процента правильных ответов произошло на 1-2%. Распознаваемость секторов континентальности в горах улучшилась с 89 до 94%. Стоит отметить, что обучение нейронных сетей на меньшем количестве входных параметров происходило значительно дольше. Интервал колебания процента правильных ответов стал больше. В целом данную систему классификации можно использовать для прогноза, предварительно убедившись в ее объективности.
При дальнейшем исследовании возможной смены ландшафтных зон нужно дополнительно включить в обучающую и тестирующую выборки новые климатические параметры, доступные для прогноза.
В качестве примера на полученных нейросетях по данным эксперта выполнен точечный прогноз ситуации на 2030г. для 40 метеостанций, расположенных в разных ландшафтных зонах и секторах континентальности. Определялась возможность изменения лесорастительного потенциала метеостанций, т.е. их зональной и секторной принадлежности при заданном сценарии климата.
По таблице Изменение климатических параметров по секторам на 2030 год(Таблица 2) для 40 метеостанций были изменены следующие параметры: средняя температура января, средняя температура июля, сумма осадков за холодный период года, сумма осадков за год. На основании измененных параметров был вычислен индекс континентальности по формуле Конрада. Далее использовались обученные нейронные сети для определения зон и секторов, которые должны соответствовать измененным климатическим параметрам метеостанций.
При прогнозе разные станции ведут себя по-разному. 26 метеостанций остались в тех же зонах и секторах (например, Богучаны, Енисейск, Игарка, Красноярск, Томск). А те, которые были ближе к климатическим границам, переходят в другой класс. У 8 метеостанций изменилась зона (например: Братск, Кежма, Якутск, Янск), эти зоны имеют потенциал, соответствующий соседней, более южной зоне. И для 7 станций изменился сектор континентальности (например: Канск, Минусинск, Абакан), эти секторы имеют потенциал, соответствующий соседнему, менее континентальному сектору. Соответственно прогнозу в данных зонах и секторах должна измениться и растительность.
Отсюда следует, что к 2030г. все современные ландшафтные зоны сохранятся на территории Сибири, хотя некоторые смещения границ, возможно, произойдут. Общий вывод данного точечного прогноза сводится к тому, что тенденции к сменам на более "южную" зону могут проявиться во всех звеньях ландшафтов: в растительности, почвах, гидрологическом режиме и т.д. Тенденция смены более северных зон более южными и менее континентальными, отмечаемая другими авторами [21], в целом подтверждается.
Оценивая первые опыты моделирования, не следует особенно доверять полученным результатам, поскольку авторы не учитывали обратное влияние лесных экосистем на климат и многие косвенные взаимодействия в ландшафтах. В данном случае важен не столько результат прогноза, сколько методика прогноза. Фактически мы прогнозируем, какое новое равновесное состояние будет устойчивым, если температура июля вырастет на 1-2 градуса, января – на 3-4 градуса, осадки за год вырастут на 30-50 мм., осадки холодного периода – на 10-30 мм. Если какая-либо точка переходит в другой, соседний класс, это означает для нее потенциальное состояние растительного покрова, тогда как реальный покров не сразу достигнет этого состояния. Нужно, чтобы прошло, по меньшей мере, несколько сотен лет (время релаксации лесной растительности) для достижения нового равновесного состояния в ландшафте при данном климатическом сценарии.
Определим теоретическое и прикладное значение прогноза. Очевидно, что лесное хозяйство должно принимать во внимание долгосрочные прогнозы климата для того, чтобы планировать лесовосстановление, поддержание лесистости и устойчивости лесного покрова с учетом региональных особенностей.
Моделирование с помощью нейронных сетей позволяет выделить те объекты (регионы), которые могут подвергнуться максимальному риску. Так, например, не следует проводить массовые посадки леса в тех районах, где наиболее высок риск засухи, пожара. Здесь важнее провести первоочередную противопожарную профилактику лесных массивов и ограничить посадки леса наиболее благоприятными условиями топографии и почв.
- Методы нейроинформатики
- Фцп "интеграция"
- Предисловие редактора
- Моделирование данных при помощи кривыхдля восстановления пробелов в таблицах
- 660036, Красноярск-36, ивм со ран,
- 1. Общая схема метода
- 2. Итерационный метод главных компонент для данных с пропусками
- 3. Квазилинейные факторы и формулы Карлемана
- 4. Нейронный конвейер
- Литература
- Финитность и детерминированность простых программ для кинетической машины кирдина
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Понятие кинетической машины Кирдина
- 3. Модели выполнения программы
- 3.1. Последовательная модель
- 3.2. Параллельно-последовательная модель
- 3.3. Максимальная параллельно-последовательная модель
- 4. Программы, состоящие из одной команды
- 4.1. Распад
- 4.2. Синтез
- 4.3. Прямая замена
- 5. Заключение
- ЛитературА
- Алгоритмическая универсальность кинетической машины кирдина
- 660036, Красноярск-36, ивм со ран,
- Литература
- Погрешности нейронных сетей. Вычисление погрешностей весов синапсов
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Структура сети
- 3. Два базовых подхода к оценкам погрешности
- 4. Погрешности весов синапсов
- 5. Гарантированные интервальные оценки погрешностей весов синапсов
- 6. Среднеквадратические оценки погрешностей весов синапсов
- 7. Заключение
- Литература
- Нейросетевые методы обработки информации в задачах прогноза климатических характеристик и лесорастительных свойств ландшафтных зон
- 660036, Красноярск-36, ивм со ран,
- Введение
- 1. Проблемы обработки таблиц экспериментальных данных
- 2. Искусственные нейронные сети
- 2.1. Элементы нейронных сетей
- 2.2. Архитектуры нейронных сетей
- 2.3. Решение задач нейронными сетями
- 2.4. Подача входных сигналов и снятие выходных сигналов сети
- 2.5. Обучение нейронных сетей
- 2.6. Вычисление градиента функции оценки по подстроечным параметрам сети
- 2.7. Факторы, влияющие на обучение нейронной сети
- 2.8. Упрощение нейронных сетей
- 2.9 Вычисление показателей значимости параметров и входных сигналов сети
- 3. Транспонированная задача регрессии
- 4. Применение нейросетевых технологий для обработки таблицы климатических данных
- 4.1. Заполнение пропусков в таблице климатических данных
- 4.2. Построение классификационной модели ландшафтных зон и секторов континентальности
- 4.2.1. Классификация ландшафтных зон Сибири
- 4.2.2. Идентификация лесных зон по континентальности
- 4.3. Прогнозирование возможного изменения ландшафтных зон и секторов континентальности
- 5. Заключение
- Литература
- Интуитивное предсказание нейросетями взаимоотношений в группе
- 660049, Красноярск, пр. Мира 82
- 1. Проблема оценки взаимоотношений
- 2. Общая задача экспериментов
- 3. Применяемые в экспериментах психологические методики
- 4. Эксперименты по предсказанию группового статуса
- 5. Нейросетевое исследование структуры опросника
- 6. Оценка оптимизации задачника нейросетью с позиций теории информации
- 7 Эксперименты по предсказанию парных взаимоотношений
- Литература
- Аппроксимация многомерных функций полутораслойным предиктором с произвольными преобразователями
- 660049, Красноярск, пр. Мира 82
- 1. Постановка проблемы
- 2. Аналитическое решение
- 3. Запись решения в идеологии нейросетей
- 4. Алгоритмическая часть
- 5. Оценка информационной емкости нейронной сети при помощи выборочной константы Липшица
- 6. Соглашение о терминологии
- 7. Компоненты сети
- 8. Общий элемент сети
- 9. Вход сети
- 10. Выход сети
- 11. Синапс сети
- 12. Тривиальный сумматор
- 13. Нейрон
- 14. Поток сети
- 15. Скомпонованная полутораслойная поточная сеть
- Литература
- Использование нейросетевых технологий при решении аналитических задач в гис
- 660036, Красноярск-36, ивм со ран,
- Литература
- Использование нейросетевых технологий для проведения учебно-исследовательских работ
- 1. Введение
- 2. Зимняя Политехническая Школа по Нейроинформатике
- 3. Задачи
- 4. Результаты
- 5. Перспективы
- Литература
- Производство полуэмпирических знаний из таблиц данных с помощью обучаемых искусственных нейронных сетей
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Логически прозрачные нейронные сети
- 2.1. Архитектура логически прозрачных сетей
- 2.2. Критерии логической прозрачности нейронной сети
- 2.3. Требования к нелинейности элементов
- 3. Контрастирование нейронов
- 4. Приведение нейронных сетей к логически прозрачному виду
- 4.1. Наложение ограничений на архитектуру нейросети
- 4.2. Упрощение нейросети
- 4.3. Приведение настраиваемых параметров сети к предельным значениям и модификация нелинейных преобразователей нейронов
- 4.4. Проведение эквивалентных преобразований структуры нейросети
- 5. Вербализация нейронных сетей
- 6. Автоматическая генерация полуэмпирических теорий
- 7. Когнитологические аспекты
- 8. Влияние функции оценки на логическую прозрачность сети. Исключение примеров
- 9. Как выбирают американских президентов
- 10. Заключение
- Литература
- Содержание