Литература
Бессолицина Е.П., Какарека С.В., Крауклис А.А., Кремер Л.К. Геосистемы контакта тайги и степи: юг Центральной Сибири. – Новосибирск: Наука, 1991. – 217 с.
Браверман Э.М., Мучник И.Б. Структурные методы обработки эмпирических данных. – М., Наука. Гл. ред. физ.-мат. лит., 1983. – 464с.
Вапник В.Н. Восстановление зависимостей по эмпирическим данным. – М.: Наука, 1979. – 448с.
Гилев С.Е., Коченов Д.А., Миркес Е.М., Россиев Д.А. Контрастирование, оценка значимости параметров, оптимизация их значений и их интерпретация в нейронных сетях // Доклады III Всероссийского семинара “Нейроинформатика и ее приложения”.- Красноярск, 1995. - С.66-78.
Горбань А.Н. Обучение нейронных сетей. М.": изд. СССР-США СП "ParaGraph", 1990. -160 с.
Горбань А.Н. Проблема скрытых параметров и задачи транспонированной регрессии // Нейроинформатика и ее приложения. Тезисы докладов VВсероссийского семинара. Красноярск: изд. КГТУ, 1997. – с.57-58.
Горбань А.Н., Миркес Е.М. Оценки и интерпретаторы ответа для сетей двойственного функционирования. Вычислительный центр СО РАН в г. Красноярске. Красноярск, 1997. - 24 с. (Рукопись деп. в ВИНИТИ 25.07.97, № 2511-В97)
Горбань А.Н., Новоходько А.Ю., Царегородцев В.Г. Нейросетевая реализация транспонированной задачи линейной регрессии // Нейроинформатика и ее приложения. Тезисы докладов IVВсероссийского семинара, 5-7 октября 1996 г. Красноярск: изд. КГТУ, 1996. – с.37-39.
Горбань А.Н., Россиев Д.А. Нейронные сети на персональном компьютере. –Новосибирск: Наука (Сиб. отделение), 1996. – 276с.
Загоруйко Н.Г., Елкина В.Н., Лбов Г.С. Алгоритмы обнаружения эмпирических закономерностей. – Новосибирск: Наука, 1985. – 110с.
Кендалл М., Стьюарт А. Статистические выводы и связи. – М.: Наука, 1973. – 900с.
Кендалл М., Стьюарт А. Многомерный статистический анализ и временные ряды. – М.: Наука, 1976. – 736 с.
Ландшафты юга Восточной Сибири. Карта м-ба 1: 1 500 000 /Ред. В. Б. Сочава. – М.:ГУГК, 1977.
Лбов Г.С. Методы обработки разнотипных экспериментальных данных. – Новосибирск: Наука, 1981. – 157с.
Мильков Ф. Н. Лесостепной ландшафт и его зональное подразделение / Изв. АН СССР. Сер. геогр., № 5, 1951. С. 3-14.
Назимова Д.И., Молокова Н.И., Джансеитов К.К. Высотная поясность и климат в горах южной Сибири /География и природные ресурсы., № 2, 1981. С. 68-78.
Рао С.Р. Линейные статистические методы. – М.: Наука, 1968. – 548 с.
Царегородцев В.Г. Транспонированная регрессия в задаче интерполяции свойств химических элементов. // Вестник КГТУ. Информатика, вычислительная техника, управление. Сб. научных трудов / Красноярск:КГТУ. 1997. 139с. – с.31‑36.
Gorban A.N., Novokhodko A.Yu. Neural Networks In Transposed Regression Problem, Proc. of the World Congress on Neural Networks, Sept. 15-18, 1996, San Diego, CA, Lawrence Erlbaum Associates, 1996, pp. 515-522.
Solomon A. M. and Cramer W. Biospheric Implications of Global Environmental Change / Repr. From Solomon et al. Vegetation Dynamics and Global Change. Chapman and hall, London, 1976. p. 25-51.
Tchebakova N.M., Mousured R.A., Leemans R. and Nazimova D.I. Possible Vegetation Shifts inSiberia under Climatic Change. / Impacts of Climate Change on Ecosystems, 1995.p. 67-83.
Tchebakova N.M., Mousured R.A. andNazimova D.I.A Siberian Vegetation Model Based on Climatic Parameters / Can. J. For. Res. 24, 1994. p. 1597-1607.
Walter, Hand Box. Global Classification of Natural Terrestrial Ecosystem / Vegetatio. 32 (2), 1976. p. 75-81.
Кирдин А.Н., Новоходько А.Ю., Царегородцев В.Г. Глава 7. Скрытые параметры и транспонированная регрессия // Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин, Е.М.Миркес и др. Новосибирск: Наука, 1998.
Миркес Е.М. Глава 9. Логически прозрачные нейронные сети и производство явных знаний из данных // Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин, Е.М.Миркес и др. Новосибирск: Наука, 1998.
Горбань А.Н. Глава 1. Возможности нейронных сетей // Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин, Е.М.Миркес и др. Новосибирск: Наука, 1998.
Горбань А.Н. Глава 2. Решение задач нейронными сетями // Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин, Е.М.Миркес и др. Новосибирск: Наука, 1998.
Горбань А.Н. Глава 3. Быстрое дифференцирование, двойственность и обратное распространение ошибки // Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин, Е.М.Миркес и др. Новосибирск: Наука, 1998.
- Методы нейроинформатики
- Фцп "интеграция"
- Предисловие редактора
- Моделирование данных при помощи кривыхдля восстановления пробелов в таблицах
- 660036, Красноярск-36, ивм со ран,
- 1. Общая схема метода
- 2. Итерационный метод главных компонент для данных с пропусками
- 3. Квазилинейные факторы и формулы Карлемана
- 4. Нейронный конвейер
- Литература
- Финитность и детерминированность простых программ для кинетической машины кирдина
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Понятие кинетической машины Кирдина
- 3. Модели выполнения программы
- 3.1. Последовательная модель
- 3.2. Параллельно-последовательная модель
- 3.3. Максимальная параллельно-последовательная модель
- 4. Программы, состоящие из одной команды
- 4.1. Распад
- 4.2. Синтез
- 4.3. Прямая замена
- 5. Заключение
- ЛитературА
- Алгоритмическая универсальность кинетической машины кирдина
- 660036, Красноярск-36, ивм со ран,
- Литература
- Погрешности нейронных сетей. Вычисление погрешностей весов синапсов
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Структура сети
- 3. Два базовых подхода к оценкам погрешности
- 4. Погрешности весов синапсов
- 5. Гарантированные интервальные оценки погрешностей весов синапсов
- 6. Среднеквадратические оценки погрешностей весов синапсов
- 7. Заключение
- Литература
- Нейросетевые методы обработки информации в задачах прогноза климатических характеристик и лесорастительных свойств ландшафтных зон
- 660036, Красноярск-36, ивм со ран,
- Введение
- 1. Проблемы обработки таблиц экспериментальных данных
- 2. Искусственные нейронные сети
- 2.1. Элементы нейронных сетей
- 2.2. Архитектуры нейронных сетей
- 2.3. Решение задач нейронными сетями
- 2.4. Подача входных сигналов и снятие выходных сигналов сети
- 2.5. Обучение нейронных сетей
- 2.6. Вычисление градиента функции оценки по подстроечным параметрам сети
- 2.7. Факторы, влияющие на обучение нейронной сети
- 2.8. Упрощение нейронных сетей
- 2.9 Вычисление показателей значимости параметров и входных сигналов сети
- 3. Транспонированная задача регрессии
- 4. Применение нейросетевых технологий для обработки таблицы климатических данных
- 4.1. Заполнение пропусков в таблице климатических данных
- 4.2. Построение классификационной модели ландшафтных зон и секторов континентальности
- 4.2.1. Классификация ландшафтных зон Сибири
- 4.2.2. Идентификация лесных зон по континентальности
- 4.3. Прогнозирование возможного изменения ландшафтных зон и секторов континентальности
- 5. Заключение
- Литература
- Интуитивное предсказание нейросетями взаимоотношений в группе
- 660049, Красноярск, пр. Мира 82
- 1. Проблема оценки взаимоотношений
- 2. Общая задача экспериментов
- 3. Применяемые в экспериментах психологические методики
- 4. Эксперименты по предсказанию группового статуса
- 5. Нейросетевое исследование структуры опросника
- 6. Оценка оптимизации задачника нейросетью с позиций теории информации
- 7 Эксперименты по предсказанию парных взаимоотношений
- Литература
- Аппроксимация многомерных функций полутораслойным предиктором с произвольными преобразователями
- 660049, Красноярск, пр. Мира 82
- 1. Постановка проблемы
- 2. Аналитическое решение
- 3. Запись решения в идеологии нейросетей
- 4. Алгоритмическая часть
- 5. Оценка информационной емкости нейронной сети при помощи выборочной константы Липшица
- 6. Соглашение о терминологии
- 7. Компоненты сети
- 8. Общий элемент сети
- 9. Вход сети
- 10. Выход сети
- 11. Синапс сети
- 12. Тривиальный сумматор
- 13. Нейрон
- 14. Поток сети
- 15. Скомпонованная полутораслойная поточная сеть
- Литература
- Использование нейросетевых технологий при решении аналитических задач в гис
- 660036, Красноярск-36, ивм со ран,
- Литература
- Использование нейросетевых технологий для проведения учебно-исследовательских работ
- 1. Введение
- 2. Зимняя Политехническая Школа по Нейроинформатике
- 3. Задачи
- 4. Результаты
- 5. Перспективы
- Литература
- Производство полуэмпирических знаний из таблиц данных с помощью обучаемых искусственных нейронных сетей
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Логически прозрачные нейронные сети
- 2.1. Архитектура логически прозрачных сетей
- 2.2. Критерии логической прозрачности нейронной сети
- 2.3. Требования к нелинейности элементов
- 3. Контрастирование нейронов
- 4. Приведение нейронных сетей к логически прозрачному виду
- 4.1. Наложение ограничений на архитектуру нейросети
- 4.2. Упрощение нейросети
- 4.3. Приведение настраиваемых параметров сети к предельным значениям и модификация нелинейных преобразователей нейронов
- 4.4. Проведение эквивалентных преобразований структуры нейросети
- 5. Вербализация нейронных сетей
- 6. Автоматическая генерация полуэмпирических теорий
- 7. Когнитологические аспекты
- 8. Влияние функции оценки на логическую прозрачность сети. Исключение примеров
- 9. Как выбирают американских президентов
- 10. Заключение
- Литература
- Содержание