2.9 Вычисление показателей значимости параметров и входных сигналов сети
У нейронной сети имеется набор n-мерных векторов данныхxi,i=1,..,N(задачник) с координатамиxji,j=1,..,n,M-мерный вектор параметровaс координатамиak,k=1,..,M, и некоторая функция оценкиH(x,a), оценивающая работу сети с параметрамиaна векторе данныхx. Требуется выделить у сети наименее значимые параметрыakи сигналыxjи модифицировать систему, отбрасывая эти параметры и компоненты данных.
Для каждого akопределено некоторое значениеak0и сокращениеakозначает приравниваниеak=ak0. Аналогично для каждой компоненты данныхxj и любого примераxiопределеноxji0 и отбрасываниеj-ой компоненты данных дляi-го примера означает приравниваниеxj= xji0.
Такая процедура допускает очень большую свободу в доопределении процедуры сокращения описания. В качестве простейшего базового варианта будем иметь в видуak0=0 и для всехi (параметры обращаются в нуль, данные заменяются средними по выборке). В случае данных, отнормированных, например, в диапазон [-1,1], в качествеxji0, естественно, принимается нуль.
Показатели значимости вычисляются в два этапа: сначала они вычисляются для одного вектора данных (примера), а потом – по всей выборке. Для данного xpзначимостиakиxjоцениваются так:
;
.
Здесь – просто вычисленные в линейном приближении абсолютные величины измененияHпри сокращении описания, частные производные вычисляются при двойственном функционировании. Естественно, значение функции оценки должно быть ненулевым. Поэтому, если используются специализированные функции оценки, на этапе вычисления значимости необходимо возвращаться к оценке МНК.
Оценка по всему задачнику производится с использованием некоторой нормы, например, c использованием нормы в виде суммы модулей
;
или максимума модулей.
;.
Часто приходится иметь дело с системой, которая меняет свои параметры, например, в ходе обучения. Тогда к моменту принятия решения о значимости может быть накоплена информация о частных производных Hв разных точкахa=a1,..,aq. Тогда показатели значимости для одного вектора данных вычисляются так:
;
.
Усредняются абсолютные значения производных, а приращения берутся в той точке, в которой будет проводиться процедура сокращения. Далее для всей выборки показатели значимости усредняются в одной из норм.
Использование вычисленных таким образом показателей значимости часто позволяет очень сильно сократить как число входных сигналов сети (остается только минимально необходимый для правильного решения задачи набор признаков), так и число элементов сети.
Если необходимо не исключать из сети адаптивные элементы, а приводить их значения к конечному набору выделенных значений, то для каждого ak в качествеak0 принимается ближайшее кakвыделенное значение. Такая задача возникает при бинаризации весов синапсов сети – приведении весов синапсов к величинам -1 или 1.
- Методы нейроинформатики
- Фцп "интеграция"
- Предисловие редактора
- Моделирование данных при помощи кривыхдля восстановления пробелов в таблицах
- 660036, Красноярск-36, ивм со ран,
- 1. Общая схема метода
- 2. Итерационный метод главных компонент для данных с пропусками
- 3. Квазилинейные факторы и формулы Карлемана
- 4. Нейронный конвейер
- Литература
- Финитность и детерминированность простых программ для кинетической машины кирдина
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Понятие кинетической машины Кирдина
- 3. Модели выполнения программы
- 3.1. Последовательная модель
- 3.2. Параллельно-последовательная модель
- 3.3. Максимальная параллельно-последовательная модель
- 4. Программы, состоящие из одной команды
- 4.1. Распад
- 4.2. Синтез
- 4.3. Прямая замена
- 5. Заключение
- ЛитературА
- Алгоритмическая универсальность кинетической машины кирдина
- 660036, Красноярск-36, ивм со ран,
- Литература
- Погрешности нейронных сетей. Вычисление погрешностей весов синапсов
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Структура сети
- 3. Два базовых подхода к оценкам погрешности
- 4. Погрешности весов синапсов
- 5. Гарантированные интервальные оценки погрешностей весов синапсов
- 6. Среднеквадратические оценки погрешностей весов синапсов
- 7. Заключение
- Литература
- Нейросетевые методы обработки информации в задачах прогноза климатических характеристик и лесорастительных свойств ландшафтных зон
- 660036, Красноярск-36, ивм со ран,
- Введение
- 1. Проблемы обработки таблиц экспериментальных данных
- 2. Искусственные нейронные сети
- 2.1. Элементы нейронных сетей
- 2.2. Архитектуры нейронных сетей
- 2.3. Решение задач нейронными сетями
- 2.4. Подача входных сигналов и снятие выходных сигналов сети
- 2.5. Обучение нейронных сетей
- 2.6. Вычисление градиента функции оценки по подстроечным параметрам сети
- 2.7. Факторы, влияющие на обучение нейронной сети
- 2.8. Упрощение нейронных сетей
- 2.9 Вычисление показателей значимости параметров и входных сигналов сети
- 3. Транспонированная задача регрессии
- 4. Применение нейросетевых технологий для обработки таблицы климатических данных
- 4.1. Заполнение пропусков в таблице климатических данных
- 4.2. Построение классификационной модели ландшафтных зон и секторов континентальности
- 4.2.1. Классификация ландшафтных зон Сибири
- 4.2.2. Идентификация лесных зон по континентальности
- 4.3. Прогнозирование возможного изменения ландшафтных зон и секторов континентальности
- 5. Заключение
- Литература
- Интуитивное предсказание нейросетями взаимоотношений в группе
- 660049, Красноярск, пр. Мира 82
- 1. Проблема оценки взаимоотношений
- 2. Общая задача экспериментов
- 3. Применяемые в экспериментах психологические методики
- 4. Эксперименты по предсказанию группового статуса
- 5. Нейросетевое исследование структуры опросника
- 6. Оценка оптимизации задачника нейросетью с позиций теории информации
- 7 Эксперименты по предсказанию парных взаимоотношений
- Литература
- Аппроксимация многомерных функций полутораслойным предиктором с произвольными преобразователями
- 660049, Красноярск, пр. Мира 82
- 1. Постановка проблемы
- 2. Аналитическое решение
- 3. Запись решения в идеологии нейросетей
- 4. Алгоритмическая часть
- 5. Оценка информационной емкости нейронной сети при помощи выборочной константы Липшица
- 6. Соглашение о терминологии
- 7. Компоненты сети
- 8. Общий элемент сети
- 9. Вход сети
- 10. Выход сети
- 11. Синапс сети
- 12. Тривиальный сумматор
- 13. Нейрон
- 14. Поток сети
- 15. Скомпонованная полутораслойная поточная сеть
- Литература
- Использование нейросетевых технологий при решении аналитических задач в гис
- 660036, Красноярск-36, ивм со ран,
- Литература
- Использование нейросетевых технологий для проведения учебно-исследовательских работ
- 1. Введение
- 2. Зимняя Политехническая Школа по Нейроинформатике
- 3. Задачи
- 4. Результаты
- 5. Перспективы
- Литература
- Производство полуэмпирических знаний из таблиц данных с помощью обучаемых искусственных нейронных сетей
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Логически прозрачные нейронные сети
- 2.1. Архитектура логически прозрачных сетей
- 2.2. Критерии логической прозрачности нейронной сети
- 2.3. Требования к нелинейности элементов
- 3. Контрастирование нейронов
- 4. Приведение нейронных сетей к логически прозрачному виду
- 4.1. Наложение ограничений на архитектуру нейросети
- 4.2. Упрощение нейросети
- 4.3. Приведение настраиваемых параметров сети к предельным значениям и модификация нелинейных преобразователей нейронов
- 4.4. Проведение эквивалентных преобразований структуры нейросети
- 5. Вербализация нейронных сетей
- 6. Автоматическая генерация полуэмпирических теорий
- 7. Когнитологические аспекты
- 8. Влияние функции оценки на логическую прозрачность сети. Исключение примеров
- 9. Как выбирают американских президентов
- 10. Заключение
- Литература
- Содержание