2.5. Обучение нейронных сетей
Обучение нейронной сети на некотором "задачнике" означает минимизацию функционала невязки между выходными сигналами сети и сигналами, которые требуется получить. Минимизация функционала невязки (оценки в дальнейшем) производится путем такой подстройки обучаемых параметров aiнейронов сети, чтобы сеть на некоторый входной вектор сигналовXвыдавала ответY', который был бы по возможности ближе к требуемому ответуY. Иными словами, чтобы для задачника с числом примеровN(т.е. для N пар {Xi,Yi},i=1..N) достигался минимум суммарной функции оценки:
Вкачестве функции нормы выступает покомпонентная сумма квадратов элементов вектораY-Y'(оценка МНК), либо более специализированная. Применение более специализированных оценок ускоряет процесс обучения сети. Так, можно использовать оценки, позволяющие задавать требования к точности решения задачи. Это позволяет прекращать процесс обучения, когда достигнута удовлетворяющая пользователя точность. Для решения задач классификации можно строить специализированные оценки, основанные на используемом при решении задачи интерпретаторе ответа. Подробно разнообразные интерпретаторы ответа и построенные по ним оценки описаны в [7,9].
Минимизация функции оценки выполняется с привлечением градиентных методов оптимизации. Преобразовав по некоторым правилам структуру сети, подавая на выход сети частные производные функции оценки по выходным сигналам и используя так называемое двойственное функционирование, мы можем получить для каждого подстроечного параметра сети и для каждого входного сигнала частные производные функции оценки по значению этого параметра или сигнала. Для вектора параметров сети вектор соответствующих частных производных будет градиентом функции оценки, поэтому возможна градиентная оптимизация функции оценки, в ходе которой нейронная сеть "обучается" давать требуемые ответы на подаваемые ей входные сигналы.
Сеть лучше обучать по суммарному градиенту (градиенту по всем примерам задачника), что ускоряет процесс обучения, и применять специализированные алгоритмы оптимизации, надстраиваемые над простейшим градиентным спуском. Для вычисления суммарного градиента необходимо просуммировать вектора градиентов, вычисляемые для каждого примера задачника (всего N векторов). Естественно, что нет необходимости одновременного хранения в памяти ЭВМ градиентов для всех примеров, процесс вычисления суммарного градиента реализуется как процесс последовательного накопления.
- Методы нейроинформатики
- Фцп "интеграция"
- Предисловие редактора
- Моделирование данных при помощи кривыхдля восстановления пробелов в таблицах
- 660036, Красноярск-36, ивм со ран,
- 1. Общая схема метода
- 2. Итерационный метод главных компонент для данных с пропусками
- 3. Квазилинейные факторы и формулы Карлемана
- 4. Нейронный конвейер
- Литература
- Финитность и детерминированность простых программ для кинетической машины кирдина
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Понятие кинетической машины Кирдина
- 3. Модели выполнения программы
- 3.1. Последовательная модель
- 3.2. Параллельно-последовательная модель
- 3.3. Максимальная параллельно-последовательная модель
- 4. Программы, состоящие из одной команды
- 4.1. Распад
- 4.2. Синтез
- 4.3. Прямая замена
- 5. Заключение
- ЛитературА
- Алгоритмическая универсальность кинетической машины кирдина
- 660036, Красноярск-36, ивм со ран,
- Литература
- Погрешности нейронных сетей. Вычисление погрешностей весов синапсов
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Структура сети
- 3. Два базовых подхода к оценкам погрешности
- 4. Погрешности весов синапсов
- 5. Гарантированные интервальные оценки погрешностей весов синапсов
- 6. Среднеквадратические оценки погрешностей весов синапсов
- 7. Заключение
- Литература
- Нейросетевые методы обработки информации в задачах прогноза климатических характеристик и лесорастительных свойств ландшафтных зон
- 660036, Красноярск-36, ивм со ран,
- Введение
- 1. Проблемы обработки таблиц экспериментальных данных
- 2. Искусственные нейронные сети
- 2.1. Элементы нейронных сетей
- 2.2. Архитектуры нейронных сетей
- 2.3. Решение задач нейронными сетями
- 2.4. Подача входных сигналов и снятие выходных сигналов сети
- 2.5. Обучение нейронных сетей
- 2.6. Вычисление градиента функции оценки по подстроечным параметрам сети
- 2.7. Факторы, влияющие на обучение нейронной сети
- 2.8. Упрощение нейронных сетей
- 2.9 Вычисление показателей значимости параметров и входных сигналов сети
- 3. Транспонированная задача регрессии
- 4. Применение нейросетевых технологий для обработки таблицы климатических данных
- 4.1. Заполнение пропусков в таблице климатических данных
- 4.2. Построение классификационной модели ландшафтных зон и секторов континентальности
- 4.2.1. Классификация ландшафтных зон Сибири
- 4.2.2. Идентификация лесных зон по континентальности
- 4.3. Прогнозирование возможного изменения ландшафтных зон и секторов континентальности
- 5. Заключение
- Литература
- Интуитивное предсказание нейросетями взаимоотношений в группе
- 660049, Красноярск, пр. Мира 82
- 1. Проблема оценки взаимоотношений
- 2. Общая задача экспериментов
- 3. Применяемые в экспериментах психологические методики
- 4. Эксперименты по предсказанию группового статуса
- 5. Нейросетевое исследование структуры опросника
- 6. Оценка оптимизации задачника нейросетью с позиций теории информации
- 7 Эксперименты по предсказанию парных взаимоотношений
- Литература
- Аппроксимация многомерных функций полутораслойным предиктором с произвольными преобразователями
- 660049, Красноярск, пр. Мира 82
- 1. Постановка проблемы
- 2. Аналитическое решение
- 3. Запись решения в идеологии нейросетей
- 4. Алгоритмическая часть
- 5. Оценка информационной емкости нейронной сети при помощи выборочной константы Липшица
- 6. Соглашение о терминологии
- 7. Компоненты сети
- 8. Общий элемент сети
- 9. Вход сети
- 10. Выход сети
- 11. Синапс сети
- 12. Тривиальный сумматор
- 13. Нейрон
- 14. Поток сети
- 15. Скомпонованная полутораслойная поточная сеть
- Литература
- Использование нейросетевых технологий при решении аналитических задач в гис
- 660036, Красноярск-36, ивм со ран,
- Литература
- Использование нейросетевых технологий для проведения учебно-исследовательских работ
- 1. Введение
- 2. Зимняя Политехническая Школа по Нейроинформатике
- 3. Задачи
- 4. Результаты
- 5. Перспективы
- Литература
- Производство полуэмпирических знаний из таблиц данных с помощью обучаемых искусственных нейронных сетей
- 660036, Красноярск-36, ивм со ран,
- 1. Введение
- 2. Логически прозрачные нейронные сети
- 2.1. Архитектура логически прозрачных сетей
- 2.2. Критерии логической прозрачности нейронной сети
- 2.3. Требования к нелинейности элементов
- 3. Контрастирование нейронов
- 4. Приведение нейронных сетей к логически прозрачному виду
- 4.1. Наложение ограничений на архитектуру нейросети
- 4.2. Упрощение нейросети
- 4.3. Приведение настраиваемых параметров сети к предельным значениям и модификация нелинейных преобразователей нейронов
- 4.4. Проведение эквивалентных преобразований структуры нейросети
- 5. Вербализация нейронных сетей
- 6. Автоматическая генерация полуэмпирических теорий
- 7. Когнитологические аспекты
- 8. Влияние функции оценки на логическую прозрачность сети. Исключение примеров
- 9. Как выбирают американских президентов
- 10. Заключение
- Литература
- Содержание