Аналитическое представление электромагнитной обстановки
Согласно статической модели ЭМО, аналитическое представление формируется путем преобразования излучаемых полезных и мешающих сигналов средой их распространения. Если сигнал представить в виде поля излучения с линейной поляризацией, то в некоторой декартовой системе координатX =x, y, z, где аппертура антенны (или плоскость отражения) совмещены с координатной плоскостьюxoy, напряженность поля может быть записана в виде векторной комплексной (аппертурной) функции:
e(x, , ) = X e (x, , ) + Y e (x, , ),
где e, e — аппертурные функции поляризационных составляющих; X, Y — орты системы координат x, y, z; X — координаты текущих точек апертуры (рис. 5.5).
Рис. 5.5.Система координат пространства сигнала излучения
Для типового высокочастотного узкополосного сигнала поляризационные составляющие выражаются в виде
e(X, t, , ) = k E(t, ) E(x, y) A exp[j(t + )],
где E(t, ) — комплексная амплитуда поля излучаемого сигнала с учетом ее модуляции, перекодирующей полезное сообщение в сигнал с существенными параметрами ; E(x, y) — распределение поля в раскрыве антенны; A, — нормированная амплитуда и начальная фаза излучаемого сигнала, соответственно, выступающие как несущественные параметры и зависящие от вида модели сигнала; — круговая частота несущей сигнала; k — поляризационные коэффициенты: k = | е | / | е | — для первой поляризационной составляющей; k = | е | / | е | — для второй (ортогональной к первой) поляризационной составляющей.
Функция Fcреды распространения может быть выражена интегральной операцией, учитывающей переходную характеристику cреды. Таким образом, каждая из поляризационных составляющих поля в месте приема
U (X, t, , ) = h(X – X, t – t) dX dt,
где h(x, y, z, t)— комплексная переходная характеристика среды распространения;X = x, y, z— пространственные координаты поля в месте приема.
Этот интеграл берется по четырехмерной области существования функции e(x, y,z, t, , ). Для среды распространения ее комплексную переходную характеристику можно выразить в виде произведения
h(x, y, z) = h(x, y, z, t) h(x, y, z, t),
где h и h — регулярная и случайная части переходной характеристики среды.
Регулярная часть hопределяется законами электродинамики для свободного пространства. Для данной зоны излучающей антенны она будет
h(x, y, z, t) = exp[j – (t – R/c)] (t – R/c),
где R— дальность распространения сигнала;c— скорость распространения сигнала; = 1/ — множитель ослабления сигнала за счет рассеяния в среде распространения.
Если учесть, что это выражение определяет напряженность поля точечного излучателя, помещенного в центре координат излучающей аппертуры, то ясно, что напряженность поля в точке приема с координатами (x, y, z), обратна пропорциональна дальностиRраспространения сигнала, а набег фазы высокочастотного колебания и задержка сигнала во времени пропорциональны дальности распространения сигнала.
Случайная часть hпереходной характеристики учитывает возникающие при распространении амплитудные и фазовые искажения.
Амплитудные искажения сигнала проявляются в его замираниях либо во флуктуациях при отражении от большого числа отражателей. Они обычно принимаются случайными с распределением по релеевскому закону. Фазовые искажения также принимаются случайными с равномерным распределением плотности вероятности фазы в пределах от 0до2.
Таким образом, типовой для полезного сигнала является модель среды распространения с комплексной случайной частью h, у которой случайный модуль| h |и случайный фазовый угол.
Относительно мешающего сигнала условия распространения изменяются в более широких пределах и имеет три вида.
При распространении непреднамеренной помехи в пределах объекта, когда расстояния между антеннами взаимовлияющих РЭС малы и не изменяются в процессе функционирования РЭС, множитель hявляется постоянным и известным. В этом случае его принимают, без потери общности рассуждений, равным единице.
При рассмотрении локальных группировок со стационарно расположенными РЭС флуктуаций модуля | h |не будет, а фаза(в силу неизвестного с точностью до долей рабочей волны расстояния между РЭС) оказывается случайной.
Для подвижных РЭС и расположенных на больших расстояниях имеют место случайные модуль | h |и фазаслучайной части переходной характеристики. При этом в случае групповой непреднамеренной помехи для каждой отдельной помехи будет своя случайная частьh(1), независимая от случайной части другой одиночной помехи.
Если в выражение для поляризационных составляющих поля в месте приема подставить выражения для e,hиh, то можно определить сигнал на входе антенны приемника в форме
U (x, y, z, t) = kAexp(j) F(v, ) E(t – ) exp[j(t – kR)] ,
где R— расстояние между передатчиком и приемником;k = 2/— волновой множитель; = kR/— временная задержка принимаемого сигнала;F— диаграмма направленности антенны передающего устройства;A— амплитудный множитель, учитывающий| h |;— фазовый множитель, учитывающий.
В соответствии с рис. 5.5, диаграмма направленности выражается как функция сферических координат.
F (, ) = Е(x, y) exp[jk(x sin v cos + y sin v sin )] dx dy,
где (A)— двухмерная аппертура передающей антенны.
Для того чтобы от напряженности поля в месте приема перейти к напряженности на входе приемника, необходимо учесть преобразование электромагнитного поля антенной приемника. Это выполняется с помощью интегрального преобразования с учетом аппертуры Aприемной антенны:
U (t) =;U(x, y, z, t)F (v', ') exp[jk(x sin v' cos ' + y sin ')] dx dy,
где v','— углы в полярной системе координат приемной антенны, под которыми приходит принимаемый сигнал;— коэффициент, равный отношению величины интеграла выражения при текущих значенияхv', 'к величине этого интеграла приv' = ' = 0.
Рассмотренная процедура получения сигнала на входе приемника позволяет учесть особенности излучения сигналов, среды распространения и направленных свойств приемной антенны. Систематизация входных сигналов на основе полученных данных позволяет сформировать модель входного сигнала.
Анализ процесса формирования ЭМО в месте приема полезного сигнала свидетельствует о том, что необходимо учитывать три характерные компоненты:
полезный сигнал;
мешающий сигнал;
внутренние, или собственные, шумы приемника.
Эти три компоненты образуют на входе приемного устройства аддитивную смесь. Рассмотрим возможный вариант одной из поляризационных составляющих с учетом возможных классов сигналов и помех:
U(X, t) = ,
где U(x, t, , ) — полезный сигнал;U(x, t, )— мешающий сигнал, являющийся непреднамеренной помехой;n(x, t)— шумы приемника, пересчитанные ко входу приемника. Условиеi = 0соответствует случаю отсутствия сигнала. Каждый компонент является функцией пространства и времени. При этом входной сигнал рассматривается в пространстве наблюдения, представляющем собой область существования входного сигнала в пространстве, имеющую протяженность по каждой из осей и интервал наблюдения.
Учитывая ограниченные по ширине спектры сигналов и ограниченную ширину полосы пропускания приемника, все три компоненты принимаются узкополосными процессами, причем сигнал и помеха записываются в виде
U(X, t, , ) = Re,
U(X, t, ) = Re,
где ,,— комплексные множители, зависящие от существенных и несущественных параметров сигнала и помехи;U(X, t)иU(X, t)— комплексные пространственно-временные функции модуляции сигнала и помехи;f— несущая частота сигналов, равная частоте настройки приемника.
Необходимо отметить, что комплексные пространственно-временные функции UиUучитывают все пространственные, временные, частотные, поляризационные и энергетические отличия полезных сигналов от мешающих. Полезные сигналы отличаются друг от друга существенно разными значениями параметров.
Для систематизации большого разнообразия видов полезных и мешающих сигналов вводятся типовые модели или типовые виды сигналов. Такими видами сигналов являются: детерминированные,квазидетерминированныеислучайные(сложные). Кроме того, помехи могут быть и групповыми (т.е. состоящими из мешающих сигналов разных видов).
В качестве видового признака типовых моделей сигналов и помех используются амплитуда и начальная фаза.
Детерминированныесигналы и детерминированные помехи имеют неслучайные (известные на приемной стороне) амплитуды и начальные фазы высокочастотных колебаний. Из условия нормирования амплитуды берутся равными единице, а начальные фазы —и, соответственно.
Квазидетерминированныесигнал и помеха имеют случайные амплитуды и (или) начальные фазы. При этом типовым видом являются сигналы со случайными амплитудами и случайными начальными фазами, как характеризующиеся наибольшей степенью случайности в этом виде сигналов и наиболее часто встречающиеся на практике. Однако в отношении мешающих сигналов следует использовать и модель с неслучайной амплитудой и случайной начальной фазой, которая адекватна непреднамеренной помехе, создаваемой при близко расположенных источниках и рецепторах помех. При неслучайной амплитуде ее значение принимается равным единице, а при случайной амплитуде последняя нормируется таким образом, чтобы ее второй начальный момент, являющийся нормирующим множителем мощности (энергии) сигнала, был равен единице.
Случайные сигналы, в отличие от детерминированных и квазидетерминированных сигналов, которые относят к простым сигналам, являются сложными. Они характеризуются наличием последовательности во времени и (или) пространстве ряда квазидетерминированных сигналов. Каждый из таких сигналов называется элементарным и имеет независимые от других элементарных сигналов случайные несущие параметры (амплитуду и начальную фазу). К числу сложных относятся случайные шумовые и шумоподобные сигналы. Дополнительным видом случайных сигналов является групповая помеха, которая представляется суммой накладывающихся друг на друга во времени и (или) пространстве мешающих сигналов первых трех видов.
Таким образом, в векторной форме полезный и мешающий сигналы можно записать в виде:
для модели детерминированных сигнала и помехи
U(X, t) (=) Re,
U(X, t) (=) Re;
для модели квазидетерминированных сигнала и помехи
U(X, t, ) (=) Re,
U(X, t, ) (=) Re;
для модели случайных сигнала и помехи, а также групповой помехи
U(X, t, ) (=)Re,
U(X, t, ) (=)Re,
где (h)— совокупностьhэлементарных сигналов;(=)— знак эквивалентности, что в данном случае соответствует равенству с точностью до постоянного множителя.
- Часть 16
- Часть 121
- Глава 4 122
- Глава 5 147
- Глава 6 164
- Глава 7 188
- Глава 12 235
- Глава 13 255
- Глава 14 273
- Часть 303
- Глава 15 304
- Глава 16 315
- Глава 17 371
- Глава 18 395
- Глава 19 497
- Глава 20 515
- Методы и средства защиты информации
- Смысл разведки
- Глава 1
- Глава 2
- История разведки и контрразведки
- Российская разведка
- Украинская разведка
- Радиоразведка
- Радиоразведка во время Второй мировой войны
- Разведка конца хх века
- Глава 3
- Советские спецслужбы
- Кгб ссср
- Гру гш вс ссср
- Спецслужбы сша
- Цру (cia)
- Румо (dia)
- Анб (nsa)
- Нувкр (nro)
- Нагк (nima)
- Бри (inr)
- Фбр (fbi)
- Спецслужбы Израиля
- Шин Бет
- Спецслужбы Великобритании
- Швр (dis)
- Mi5 (SecurityService)
- Mi6 (sis)
- Цпс (gchq)
- Спецслужбы фрг
- Бнд (bnd)
- Бфф (BfF)
- Мад (mad)
- Спецслужбы Франции
- Дгсе (dgse)
- Дрм (drm)
- Роль средств технической разведки вXxIвеке
- Глава 4
- Технические каналы утечки информации. Классификация, причины и источники… образования
- Сигнал и его описание
- Сигналы с помехами
- Излучатели электромагнитных колебаний
- Низкочастотные излучатели
- Высокочастотные излучатели
- Оптические излучатели
- Глава 5
- Образование радиоканалов утечки информации
- Оценка электромагнитных полей
- Аналитическое представление электромагнитной обстановки
- Обнаружение сигналов в условиях воздействия непреднамеренных помех
- Оценка параметров сигналов в условиях воздействия непреднамеренных помех
- Глава 6
- Основные определения акустики
- Распространение звука в пространстве
- Акустическая классификация помещений
- Физическая природа, среда распространения и способ перехвата
- Заходовые методы Перехват акустической информации с помощью радиопередающих средств
- Перехват акустической информации с помощью ик передатчиков
- Закладки, использующие в качестве канала передачи акустической информации сеть 220 в и телефонные линии
- Диктофоны
- Проводные микрофоны
- “Телефонное ухо”
- Беззаходовые методы Аппаратура, использующая микрофонный эффект телефонных аппаратов
- Аппаратура вч навязывания
- Стетоскопы
- Лазерные стетоскопы
- Направленные акустические микрофоны (нам)
- Физические преобразователи
- Характеристики физических преобразователей
- Виды акустоэлектрических преобразователей
- Индуктивные преобразователи
- Микрофонный эффект электромеханического звонка телефонного аппарата
- Микрофонный эффект громкоговорителей
- Микрофонный эффект вторичных электрочасов
- Глава 7
- Паразитные связи и наводки
- Паразитные емкостные связи
- Паразитные индуктивные связи
- Паразитные электромагнитные связи
- Паразитные электромеханические связи
- Паразитные обратные связи через источники питания
- Утечка информации по цепям заземления
- Глава 8
- Визуально-оптическое наблюдение
- Глава 9
- Радиационные и химические методы получения информации
- Глава 10
- Классификация каналов и линий связи
- Взаимные влияния в линиях связи
- Часть III
- Глава 11
- Виды и природа каналов утечки информации при эксплуатации эвм
- Анализ возможности утечки информации через пэми
- Способы обеспечения зи от утечки через пэми
- Механизм возникновения пэми средств цифровой электронной техники
- Техническая реализация устройств маскировки
- Устройство обнаружения радиомикрофонов
- Обнаружение записывающих устройств (диктофонов)
- Физические принципы
- Спектральный анализ
- Распознавание событий
- Многоканальная фильтрация
- Оценка уровня пэми
- Метод оценочных расчетов
- Метод принудительной активизации
- Метод эквивалентного приемника
- Методы измерения уровня пэми
- Ближняя зона
- Дальняя зона
- Промежуточная зона
- Глава 12
- Средства несанкционированного получения информации
- Средства проникновения
- Устройства прослушивания помещений
- Радиозакладки
- Устройства для прослушивания телефонных линий
- Методы и средства подключения
- Методы и средства удаленного получения информации Дистанционный направленный микрофон
- Системы скрытого видеонаблюдения
- Акустический контроль помещений через средства телефонной связи
- Перехват электромагнитных излучений
- Глава 13
- Несанкционированное получение информации из ас
- Классификация
- Локальный доступ
- Удаленный доступ
- Сбор информации
- Сканирование
- Идентификация доступных ресурсов
- Получение доступа
- Расширение полномочий
- Исследование системы и внедрение
- Сокрытие следов
- Создание тайных каналов
- Блокирование
- Глава 14
- Намеренное силовое воздействие по сетям питания
- Технические средства для нсв по сети питания
- Вирусные методы разрушения информации
- Разрушающие программные средства
- Негативное воздействие закладки на программу
- Сохранение фрагментов информации
- Перехват вывода на экран
- Перехват ввода с клавиатуры
- Перехват и обработка файловых операций
- Разрушение программы защиты и схем контроля
- Глава 15
- Показатели оценки информации как ресурса
- Классификация методов и средств зи
- Семантические схемы
- Некоторые подходы к решению проблемы зи
- Общая схема проведения работ по зи
- Глава 16
- Классификация технических средств защиты
- Технические средства защиты территории и объектов
- Акустические средства защиты
- Особенности защиты от радиозакладок
- Защита от встроенных и узконаправленных микрофонов
- Защита линий связи
- Методы и средства защиты телефонных линий
- Пассивная защита
- Приборы для постановки активной заградительной помехи
- Методы контроля проводных линий
- Защита факсимильных и телефонных аппаратов, концентраторов
- Экранирование помещений
- Защита от намеренного силового воздействия
- Защита от нсв по цепям питания
- Защита от нсв по коммуникационным каналам
- Глава 17
- Основные принципы построения систем защиты информации в ас
- Программные средства защиты информации
- Программы внешней защиты
- Программы внутренней защиты
- Простое опознавание пользователя
- Усложненная процедура опознавания
- Методы особого надежного опознавания
- Методы опознавания ас и ее элементов пользователем
- Проблемы регулирования использования ресурсов
- Программы защиты программ
- Защита от копирования
- Программы ядра системы безопасности
- Программы контроля
- Глава 18
- Основные понятия
- Немного истории
- Классификация криптографических методов
- Требования к криптографическим методам защиты информации
- Математика разделения секрета
- Разделение секрета для произвольных структур доступа
- Определение 18.1
- Определение 18.2
- Линейное разделение секрета
- Идеальное разделение секрета и матроиды
- Определение 18.3
- Секретность и имитостойкость
- Проблема секретности
- Проблема имитостойкости
- Безусловная и теоретическая стойкость
- Анализ основных криптографических методов зи
- Шифрование методом подстановки (замены)
- Шифрование методом перестановки
- Шифрование простой перестановкой
- Усложненный метод перестановки по таблицам
- Усложненный метод перестановок по маршрутам
- Шифрование с помощью аналитических преобразований
- Шифрование методом гаммирования
- Комбинированные методы шифрования
- Кодирование
- Шифрование с открытым ключом
- Цифровая подпись
- Криптографическая система rsa
- Необходимые сведения из элементарной теории чисел
- АлгоритмRsa
- Цифровая (электронная) подпись на основе криптосистемы rsa
- Стандарт шифрования данных des
- Принцип работы блочного шифра
- Процедура формирования подключей
- Механизм действияS-блоков
- Другие режимы использования алгоритма шифрования des
- Стандарт криптографического преобразования данных гост 28147-89
- Глава 19
- Аналоговые скремблеры
- Аналоговое скремблирование
- Цифровое скремблирование
- Критерии оценки систем закрытия речи
- Глава 20
- Стеганографические технологии
- Классификация стеганографических методов
- Классификация стегосистем
- Безключевые стегосистемы
- Определение 20.1
- Стегосистемы с секретным ключом
- Определение 20.2
- Стегосистемы с открытым ключом
- Определение 20.3
- Смешанные стегосистемы
- Классификация методов сокрытия информации
- Текстовые стеганографы
- Методы искажения формата текстового документа
- Синтаксические методы
- Семантические методы
- Методы генерации стеганограмм
- Определение 20.4
- Сокрытие данных в изображении и видео
- Методы замены
- Методы сокрытия в частотной области изображения
- Широкополосные методы
- Статистические методы
- Методы искажения
- Структурные методы
- Сокрытие информации в звуковой среде
- Стеганографические методы защиты данных в звуковой среде
- Музыкальные стегосистемы
- Методы и средства защиты информации