Технические каналы утечки информации. Классификация, причины и источники… образования
Чтобы справиться со стремительно нарастающим потоком информации, вызванным научно-техническим прогрессом, субъекты предпринимательской деятельности, учреждения и организации всех форм собственности вынуждены постоянно пополнять свой арсенал разнообразными техническими средствами и системами, предназначенными для приема, передачи, обработки и хранения информации. Физические процессы, происходящие в таких устройствах при их функционировании, создают в окружающем пространстве побочные электромагнитные, акустические и другие излучения, которые в той или иной степени связаны с обработкой информации.
Подобные излучения могут обнаруживаться на довольно значительных расстояниях (до сотен метров) и, следовательно, использоваться злоумышленниками, пытающимися получить доступ к секретам. Поэтому мероприятия по ЗИ, циркулирующей в технических средствах, направлены, прежде всего, на снижение уровней таких излучений.
Побочные электромагнитные излучениявозникают вследствие непредусмотренной схемой или конструкцией рассматриваемого технического средства передачи информации по паразитным связям напряжения, тока, заряда или магнитного поля.
Под паразитной связьюпонимают связь по электрическим или магнитным цепям, появляющуюся независимо от желания конструктора. В зависимости от физической природы элементов паразитных электрических цепей, различают паразитную связь через общее полное сопротивление, емкостную или индуктивную паразитную связь.
Физические явления, лежащие в основе появления излучений, имеют различный характер, тем не менее, в общем виде утечка информации за счет побочных излучений может рассматриваться как непреднамеренная передача секретной информации по некоторой “побочной системе связи”, состоящей из передатчика (источника излучений), среды, в которой эти излучения распространяются, и принимающей стороны. Причем, в отличие от традиционных систем связи, в которых передающая и принимающая стороны преследуют одну цель — передать информацию с наибольшей достоверностью, в рассматриваемом случае “передающая сторона” заинтересована в возможно большем ухудшении передачи информации, так как это способствует ее защите. Описанную “систему связи” принято называть техническим каналом утечки информации.
В реальных условиях в окружающем пространстве присутствуют многочисленные помехи как естественного, так и искусственного происхождения, которые существенным образом влияют на возможности приема. Технические каналы утечки информации чаще всего рассматривают в совокупности с источниками помех. Для традиционных систем связи такие помехи являются негативным явлением, в значительной степени затрудняющими прием, однако для защиты технических средств от утечки информации по побочным каналам эти помехи оказываются полезными и нередко создаются специально.
Источниками излучений в технических каналах являются разнообразные технические средства, в которых циркулирует информация с ограниченным доступом.
Такими средствами могут быть:
сети электропитания и линии заземления;
автоматические сети телефонной связи;
системы телеграфной, телекодовой и факсимильной связи;
средства громкоговорящей связи;
средства звуко- и видеозаписи;
системы звукоусиления речи;
электронно-вычислительная техника;
электронные средства оргтехники.
Источником излучений в технических каналах утечки информации может быть и голосовой тракт человека, вызывающий появление опасных акустических излучений в помещении или вне его. Средой распространения акустических излучений в этом случае является воздух, а при закрытых окнах и дверях — воздух и всевозможные звукопроводящие коммуникации. Если при этом для перехвата информации используется соответствующая техника, то образуется технический канал утечки информации, называемый акустическим.
Технические каналы утечки информации принято делить на следующие типы:
радиоканалы(электромагнитные излучения радиодиапозона);
акустические каналы(распространение звуковых колебаний в любом звукопроводящем материале);
электрические каналы(опасные напряжения и токи в различных токопроводящих коммуникациях);
оптические каналы(электромагнитные излучения в инфракрасной, видимой и ультрафиолетовой части спектра);
материально-вещественные каналы(бумага, фото, магнитные носители, отходы и т.д.).
Правомерно предполагать, что образованию технических каналов утечки информации способствуют определенные обстоятельства и причины технического характера (рис. 4.1). К ним можно отнести несовершенство элементной базы и схемных решений, принятых для данной категории технических средств, эксплуатационный износ элементов изделия, а также злоумышленные действия.
Рис. 4.1.Классификация причин образования технических каналов утечки информации
Основными источникамиобразования технических каналов утечки информации (рис. 4.2) являются:
преобразователи физических величин;
излучатели электромагнитных колебаний;
паразитные связи и наводки на провода и элементы электронных устройств.
Для каждой из этих групп, в свою очередь, можно выполнить декомпозицию по принципу преобразования или иным параметрам. Так, по принципам преобразования акустические преобразователи подразделяются на индуктивные, емкостные, пьезоэлектрические и оптические. При этом по виду преобразования они могут быть и акустическими, и электромагнитными.
Декомпозиция излучателей электромагнитных колебаний выполняется по диапазону частот.
Рис. 4.2.Классификация источников образования технических каналов утечки информации
Паразитные связи и наводки проявляются в виде обратной связи (наиболее характерна положительная обратная связь), утечки по цепям питания и заземления.
Технические средства и системы могут не только непосредственно излучать в пространство сигналы, содержащие обрабатываемую ими информацию, но и улавливать за счет своих микрофонных или антенных свойств существующие в непосредственной близости от них акустические либо электромагнитные излучения. Такие технические средства могут преобразовывать принятые излучения в электрические сигналы и передавать их по своим линиям связи, как правило, бесконтрольным, за территорией объекта на значительные расстояния, что в еще большей степени повышает опасность утечки информации.
Возможностью образовывать подобные радиотехнические каналы утечки обладают некоторые телефонные аппараты, датчики охранной и пожарной сигнализации, их линии, а также сеть электропитания.
Нередки случаи, когда технические устройства имеют в своем составе, помимо подобных “микрофонов” и “антенн”, высокочастотные или импульсные генераторы. Генерируемые колебания в таких устройствах могут быть промодулированы проявившимися электрическими сигналами, вследствие чего эти технические устройства превращаются в радиопередатчики и представляют серьезную опасность, так как способны излучать информацию в окружающее пространство.
Как в любой системе связи, в каналах утечки информации опасный сигнал (сигнал, несущий секретную информацию) характеризуется длительностью Т,динамическим диапазономДи шириной спектраF, произведение которых представляет собой его объемV = T F Д.
Чтобы принять такой объем информации, на принимающей стороне должна быть аппаратура, обладающая соответствующими характеристиками, т.е. имеющая необходимую чувствительность при определенном превышении сигнала над уровнем собственных помех, и обеспечивающая необходимую ширину полосы принимаемых сигналов при соответствующей длительности их передачи.
Очевидно, что по каналу может пройти без искажения лишь такой сигнал, который удовлетворяет условиям (Т,F иД— это длительность приема информации каналом, ширина спектра принимаемого сигнала и динамический диапазон канала, соответственно):
Т Т; F F; Д Д
К основным информационным характеристикам канала относятся:
местоположение начала и конца канала;
форма передаваемой информации (дискретная, непрерывная) в звеньях канала;
структура канала передачи (датчик, кодер, модулятор, линия, демодулятор, декодер, устройство фиксации и др.);
вид канала (телефонный, телеграфный, телевизионный и др.);
скорость передачи и объем передаваемой информации;
способы преобразования информации в звеньях канала передачи (методы модуляции, кодирования и т.д.);
пропускная способность канала;
емкость канала.
Кроме того, классификация каналов передачи возможна по следующим признакам:
по виду сигналов и способу передачи;
по исполнению: проводные, кабельные, световодные, радио и другое;
по принципу действия: электромагнитные, оптические, акустические.
Параметры канала определяются физической структурой канала, его типом и режимом использования.
Ширина полосы пропускания (частотный спектр) канала F меняется от 3100 Гц для телефонного до 8 МГц для телевидения и до сотен мегагерц для оптических линий связи.
Превышение сигнала над помехой в канале(динамический диапазон)Д, определяемое соотношения мощностей сигнала и помехи в канале, — способность канала передавать различные уровни сигнала. Этот параметр связан с расчетным уровнем помех, возможностями модуляции. Динамический диапазонДограничивает дальность передачи, а также влияет на возможность выделения сигнала на фоне помех. Дальность определяется выражением:
Д = log (Р/ Р),
где РиР— средние мощности, соответственно, сигнала и помехи в канале на входе приемника.
Каждый канал также характеризуется количеством информации, которое может быть передано по нему.
Предельное значение количества информации, которое может быть передано по каналу связи, обладающему полосой пропусканияF, определяетсяформулой Шеннона:
C =Flog (1 + Р/ Р) [дв. ед./с],
где Р— средняя мощность сигнала,Р— мощность шумов с равномерным частотным спектром.
- Часть 16
- Часть 121
- Глава 4 122
- Глава 5 147
- Глава 6 164
- Глава 7 188
- Глава 12 235
- Глава 13 255
- Глава 14 273
- Часть 303
- Глава 15 304
- Глава 16 315
- Глава 17 371
- Глава 18 395
- Глава 19 497
- Глава 20 515
- Методы и средства защиты информации
- Смысл разведки
- Глава 1
- Глава 2
- История разведки и контрразведки
- Российская разведка
- Украинская разведка
- Радиоразведка
- Радиоразведка во время Второй мировой войны
- Разведка конца хх века
- Глава 3
- Советские спецслужбы
- Кгб ссср
- Гру гш вс ссср
- Спецслужбы сша
- Цру (cia)
- Румо (dia)
- Анб (nsa)
- Нувкр (nro)
- Нагк (nima)
- Бри (inr)
- Фбр (fbi)
- Спецслужбы Израиля
- Шин Бет
- Спецслужбы Великобритании
- Швр (dis)
- Mi5 (SecurityService)
- Mi6 (sis)
- Цпс (gchq)
- Спецслужбы фрг
- Бнд (bnd)
- Бфф (BfF)
- Мад (mad)
- Спецслужбы Франции
- Дгсе (dgse)
- Дрм (drm)
- Роль средств технической разведки вXxIвеке
- Глава 4
- Технические каналы утечки информации. Классификация, причины и источники… образования
- Сигнал и его описание
- Сигналы с помехами
- Излучатели электромагнитных колебаний
- Низкочастотные излучатели
- Высокочастотные излучатели
- Оптические излучатели
- Глава 5
- Образование радиоканалов утечки информации
- Оценка электромагнитных полей
- Аналитическое представление электромагнитной обстановки
- Обнаружение сигналов в условиях воздействия непреднамеренных помех
- Оценка параметров сигналов в условиях воздействия непреднамеренных помех
- Глава 6
- Основные определения акустики
- Распространение звука в пространстве
- Акустическая классификация помещений
- Физическая природа, среда распространения и способ перехвата
- Заходовые методы Перехват акустической информации с помощью радиопередающих средств
- Перехват акустической информации с помощью ик передатчиков
- Закладки, использующие в качестве канала передачи акустической информации сеть 220 в и телефонные линии
- Диктофоны
- Проводные микрофоны
- “Телефонное ухо”
- Беззаходовые методы Аппаратура, использующая микрофонный эффект телефонных аппаратов
- Аппаратура вч навязывания
- Стетоскопы
- Лазерные стетоскопы
- Направленные акустические микрофоны (нам)
- Физические преобразователи
- Характеристики физических преобразователей
- Виды акустоэлектрических преобразователей
- Индуктивные преобразователи
- Микрофонный эффект электромеханического звонка телефонного аппарата
- Микрофонный эффект громкоговорителей
- Микрофонный эффект вторичных электрочасов
- Глава 7
- Паразитные связи и наводки
- Паразитные емкостные связи
- Паразитные индуктивные связи
- Паразитные электромагнитные связи
- Паразитные электромеханические связи
- Паразитные обратные связи через источники питания
- Утечка информации по цепям заземления
- Глава 8
- Визуально-оптическое наблюдение
- Глава 9
- Радиационные и химические методы получения информации
- Глава 10
- Классификация каналов и линий связи
- Взаимные влияния в линиях связи
- Часть III
- Глава 11
- Виды и природа каналов утечки информации при эксплуатации эвм
- Анализ возможности утечки информации через пэми
- Способы обеспечения зи от утечки через пэми
- Механизм возникновения пэми средств цифровой электронной техники
- Техническая реализация устройств маскировки
- Устройство обнаружения радиомикрофонов
- Обнаружение записывающих устройств (диктофонов)
- Физические принципы
- Спектральный анализ
- Распознавание событий
- Многоканальная фильтрация
- Оценка уровня пэми
- Метод оценочных расчетов
- Метод принудительной активизации
- Метод эквивалентного приемника
- Методы измерения уровня пэми
- Ближняя зона
- Дальняя зона
- Промежуточная зона
- Глава 12
- Средства несанкционированного получения информации
- Средства проникновения
- Устройства прослушивания помещений
- Радиозакладки
- Устройства для прослушивания телефонных линий
- Методы и средства подключения
- Методы и средства удаленного получения информации Дистанционный направленный микрофон
- Системы скрытого видеонаблюдения
- Акустический контроль помещений через средства телефонной связи
- Перехват электромагнитных излучений
- Глава 13
- Несанкционированное получение информации из ас
- Классификация
- Локальный доступ
- Удаленный доступ
- Сбор информации
- Сканирование
- Идентификация доступных ресурсов
- Получение доступа
- Расширение полномочий
- Исследование системы и внедрение
- Сокрытие следов
- Создание тайных каналов
- Блокирование
- Глава 14
- Намеренное силовое воздействие по сетям питания
- Технические средства для нсв по сети питания
- Вирусные методы разрушения информации
- Разрушающие программные средства
- Негативное воздействие закладки на программу
- Сохранение фрагментов информации
- Перехват вывода на экран
- Перехват ввода с клавиатуры
- Перехват и обработка файловых операций
- Разрушение программы защиты и схем контроля
- Глава 15
- Показатели оценки информации как ресурса
- Классификация методов и средств зи
- Семантические схемы
- Некоторые подходы к решению проблемы зи
- Общая схема проведения работ по зи
- Глава 16
- Классификация технических средств защиты
- Технические средства защиты территории и объектов
- Акустические средства защиты
- Особенности защиты от радиозакладок
- Защита от встроенных и узконаправленных микрофонов
- Защита линий связи
- Методы и средства защиты телефонных линий
- Пассивная защита
- Приборы для постановки активной заградительной помехи
- Методы контроля проводных линий
- Защита факсимильных и телефонных аппаратов, концентраторов
- Экранирование помещений
- Защита от намеренного силового воздействия
- Защита от нсв по цепям питания
- Защита от нсв по коммуникационным каналам
- Глава 17
- Основные принципы построения систем защиты информации в ас
- Программные средства защиты информации
- Программы внешней защиты
- Программы внутренней защиты
- Простое опознавание пользователя
- Усложненная процедура опознавания
- Методы особого надежного опознавания
- Методы опознавания ас и ее элементов пользователем
- Проблемы регулирования использования ресурсов
- Программы защиты программ
- Защита от копирования
- Программы ядра системы безопасности
- Программы контроля
- Глава 18
- Основные понятия
- Немного истории
- Классификация криптографических методов
- Требования к криптографическим методам защиты информации
- Математика разделения секрета
- Разделение секрета для произвольных структур доступа
- Определение 18.1
- Определение 18.2
- Линейное разделение секрета
- Идеальное разделение секрета и матроиды
- Определение 18.3
- Секретность и имитостойкость
- Проблема секретности
- Проблема имитостойкости
- Безусловная и теоретическая стойкость
- Анализ основных криптографических методов зи
- Шифрование методом подстановки (замены)
- Шифрование методом перестановки
- Шифрование простой перестановкой
- Усложненный метод перестановки по таблицам
- Усложненный метод перестановок по маршрутам
- Шифрование с помощью аналитических преобразований
- Шифрование методом гаммирования
- Комбинированные методы шифрования
- Кодирование
- Шифрование с открытым ключом
- Цифровая подпись
- Криптографическая система rsa
- Необходимые сведения из элементарной теории чисел
- АлгоритмRsa
- Цифровая (электронная) подпись на основе криптосистемы rsa
- Стандарт шифрования данных des
- Принцип работы блочного шифра
- Процедура формирования подключей
- Механизм действияS-блоков
- Другие режимы использования алгоритма шифрования des
- Стандарт криптографического преобразования данных гост 28147-89
- Глава 19
- Аналоговые скремблеры
- Аналоговое скремблирование
- Цифровое скремблирование
- Критерии оценки систем закрытия речи
- Глава 20
- Стеганографические технологии
- Классификация стеганографических методов
- Классификация стегосистем
- Безключевые стегосистемы
- Определение 20.1
- Стегосистемы с секретным ключом
- Определение 20.2
- Стегосистемы с открытым ключом
- Определение 20.3
- Смешанные стегосистемы
- Классификация методов сокрытия информации
- Текстовые стеганографы
- Методы искажения формата текстового документа
- Синтаксические методы
- Семантические методы
- Методы генерации стеганограмм
- Определение 20.4
- Сокрытие данных в изображении и видео
- Методы замены
- Методы сокрытия в частотной области изображения
- Широкополосные методы
- Статистические методы
- Методы искажения
- Структурные методы
- Сокрытие информации в звуковой среде
- Стеганографические методы защиты данных в звуковой среде
- Музыкальные стегосистемы
- Методы и средства защиты информации