logo
Разностные схемы для уравнения переноса на неравномерных сетках

1.2 Сеточная функция. Пространство сеточных функций. Нормы сеточных функций

Функция y=y(xi) дискретного аргумента xi называется сеточной функцией, определенной на сетке . Сеточные функции можно рассматривать как функции целочисленного аргумента, являющегося номером узла сетки, т. е. y=y(xi)=y(i). Далее мы будем писать y(xi)=yi.

Сеточная область wh зависит от параметра h. При различных значениях параметра h имеем различные сеточные области. Поэтому и сеточные функции yh(x) зависят от параметра h.

Функции u(x) непрерывного аргумента являются элементами функционального пространства H. Множество сеточных функций yh(x) образует пространство Hh. Таким образом, в методе сеток пространство H, заменяется пространством Hh сеточных функций yh(x).

Так как рассматривается множество сеток {wh}, то мы получаем множество {Hh} пространств сеточных функций, определенных на {wh}.

Пусть u(x) - решение исходной непрерывной задачи

Lu(x)=f(x), (1)

; yh- решение разностной задачи, . Для теории приближенных вычислений представляет большой интерес оценка близости u(x) и yh(x), но u(x) и yh(x) являются элементами из различных пространств. Пространство H отображается на пространство Hh. Каждой функции ставится в соответствие сеточная функция yh(x), x wh, так что yh=Phu Hh, где Ph- линейный оператор из H в Hh. Это соответствие можно осуществить различными способами, т. е. зависит от выбора оператора Ph. Теперь, имея сеточную функцию uh, образуем разность yh-uh, которая является вектором пространства Hh. Близость yh и uh характеризуется числом yh-uhHh , где Hh - норма на Hh.

Соответствие функций u(x) и uh можно установить различными способами, например,

uh=u(x), x wh.

В дальнейшем мы будем пользоваться этим способом соответствия.

В линейном пространстве Hh введем норму Hh, которая является аналогом нормы Н в исходном пространстве Н. Обычно принято выбирать норму в пространстве Hh так, чтобы при стремлении к нулю h она переходила в ту или иную норму функций, заданных на всем отрезке, т.е. чтобы выполнялось условие

Hh=H, (2)

где Н- норма в пространстве функций, определенных на отрезке, которому принадлежит решение.

Условие (2) называют условием согласования в пространствах Hh и Н.

Рассмотрим простейшие типы норм в Hh для случая сеток

wh={xi=i•h} на отрезке 0?x?1.

1. Норма Hh=

удовлетворяет условию (2), если в качестве Н рассматривать пространство непрерывных функций с нормой

H=, H=[a,b],

а сеточную функцию определять в виде (2), т.е.

yh(x)=uh(x), x wh

2. Норма Hh=

удовлетворяют условию (2), если за Н принять пространство непрерывных функций с нормой

H=u2(x)dx, H=C[a,b] ,

а сеточную функцию определять в виде

yh=uh(x), x wh.