Примеры задач, решаемых графическим методом.
Решим графическим методом задачи использования сырья и составления рациона.
Задача использования сырья. Для изготовления двух видов продукции Р1 и Р2 используют три вида сырья: S1, S2, S3. Запасы сырья, количество единиц сырья, затрачиваемых на изготовление единицы продукци, а так же величина прибыли, получаемая от реализации единицы продукции, приведены в таблице 1.
Таблица .1.
Вид сырья | Запас сырья | Количество единиц сырья, идущих на изготовление единицы продукции | |
Р1 | Р2 | ||
S1 | 20 | 2 | 5 |
S2 | 40 | 8 | 5 |
S3 | 30 | 5 | 6 |
Прибыль от единицы продукции, руб. | 50 | 40 |
Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.
Решение.
Обозначим через х1 количество единиц продукции Р1, а через х2 – количество единиц продукции Р2. Тогда, учитывая количество единиц сырья, расходуемое на изготовление продукции, а так же запасы сырья, получим систему ограничений:
2х1 + 5х2 20
8х1 + 5х2 40
5х1 + 6х2 30
которая показывает, что количество сырья, расходуемое на изготовление продукции, не может превысит имеющихся запасов. Если продукция Р1 не выпускается, то х1=0; в противном случае x1 0. То же самое получаем и для продукции Р2. Таким образом, на неизвестные х1 и х2 должно быть наложено ограничение неотрицательности: х1 0, х2 0.
Конечную цель решаемой задачи – получение максимальной прибылипри реализации продукции – выразим как функцию двух переменных х1 и х2. Реализация х1 единиц продукции Р1 и х2 единиц продукции Р2 дает соответственно 50х1 и 40х2 руб. прибыли, суммарная прибыль Z = 50х1 + 40х2 (руб.)
Условиями не оговорена неделимость единица продукции, поэтому х1 и х2 (план выпуска продукции) могут быть и дробными числами.
Требуется найти такие х1 и х2, при которых функция Z достинает максимум, т.е. найти максимальное значение линейной функции Z = 50х1 + 40х2 при ограничениях
2х1 + 5х2 20
8х1 + 5х2 40
5х1 + 6х2 30
х1 0, х2 0.
Построим многоугольник решений.
Для этого в системе координат х1Ох2 на плоскости на плоскости изобразим граничные прямые
2х1 + 5х2 = 20 (L1)
8х1 + 5х2 = 40 (L2)
5х1 + 6х2 = 30 (L3)
х1 = 0, х2 = 0.
Взяв какую-нибудь точку, например, начало координат, установим, какую полуплоскость определяет соответствующее неравенство (эти полуплоскости на рис. 2.3 показаны стрелками). Многоугольником решений данной задачи является ограниченный пятиугольник ОАВСD. Для построения прямой 50х1 + 40х2 = 0 строим радиус-вектор N = (50;40) = 10(5;4) и через точку O проводим прямую, перпендикулярную ему. Построенную прямую Z = 0 перемещаем параллельно самой себе в направлении вектора N. Точка С лежит на пересечении прямых L1 и L2. Для определения ее координат решим систему уравнений
8x1 + 5х2 = 40
5х1 + 6х2 = 30
Оптимальный план задачи: х1 = 90/23 = 3,9; х2 = 40/23 = 1,7. Подставляя значения х1 и х2 в линейную функцию, получаем Zmax = 50 3,9 + 40 1,7 = 260,3
Таким образом, для того чтобы получить максимальную прибыль в размере 260,3 руб., необходимо запланировать производство 3,9 ед. продукции Р1 и 1,7 ед. продукции Р2.
Задача составления рациона. При откорме каждое животное ежедневно должно получать не менее 9 ед. питательного вещества S1, не менее 8 ед. вещества S2 и не менее 12 ед. вещества S3. Для составления рациона используют два вида корма. Содержание количества елиниц питательных веществ в 1 кг каждого вида корма и стоимость 1 кг корма приведены в таблице 2.
Таблица 2.
Питательные вещества | Количество единиц питательных веществ в 1 кг корма. | |
Корм 1 | Корм 2 | |
S1 | 3 | 1 |
S2 | 1 | 2 |
S3 | 1 | 6 |
Стоимость 1 кг корма, коп. | 4 | 6 |
Необходимо составить дневной рацион нужной питательности, причем затраты на него должны быть минимальными.
Решение.
Для составления математической модели обозначим через х1 и х2 соответственно количество килограммов корма 1 и 2 в дневном рационе. Принимая во внимание значения, приведенные в таблице 2.2, и условие, что дневной рацион удовлетворяет требуемой питательности только в случае, если количество единиц питательных веществ не меньше предусмотренного, получаем систему ограничений
3х1 + х2 9
х1 + 2х2 8
х1 + 6х2 12
х1 0, х2 0.
Если корм 1 не используется в рационе, то х1=0; в противном случае x1 0. Аналогично имеем х2 0. То есть должно выполняться условие неотрицательности переменных: х1 0, х2 0.
Цель данной задачи – добиться минимальных затрат на дневной рацион, поэтому общую стоимость рациона можно выразить в виде линейной функции Z = 4х1 + 6х2 (коп.) Требуется найти такие х1 и х2, при которых функция Z принимает минимальное. Таким образом, необходимо найти минимальное значение линейной функции Z = 4х1 + 6х2 при ограничениях
3х1 + х2 9
х1 + 2х2 8
х1 + 6х2 12
х1 0, х2 0.
Построим многоугольник решений. Для этого в системе координат х1Ох2 на плоскости изобразим граничные прямые
3х1 + х2 = 9 (L1)
х1 + 2х2 = 8 (L2)
х1 + 6х2 = 12 (L3)
х1 = 0, х2 = 0.
Взяв какую-нибудь точку, например, начало координат, установим, какую полуплоскость определяет соответствующее неравенство (эти полуплоскости на рис. 2.4 показаны стрелками). В результате получим неограниченную многоугольную область с угловыми точками А, В, С, D.
Для построения прямой 4х1 + 6х2 = 0 строим радиус-вектор N = (4;6) и через точку O проводим прямую, перпендикулярную ему. Построенную прямую Z = 0 перемещаем параллельно самой себе в направлении вектора N. Если прямую перемещать дальше в направлении вектора N, то значения линейной функции на многограннике решений возрастут, значит, в точке В линейная функция Z принимает минимальное значение.
Точка В лежит на пересечении прямых L1 и L2. Для определения ее координат решим систему уравнений
3x1 + х2 = 9
х1 + 2х2 = 8
Имеем: х1 = 2; х2 = 3. Подставляя значения х1 и х2 в линейную функцию, получаем Zmin = 4 2 + 6 3 = 26.
Таким образом, для того, чтобы обеспечить минимум затрат (26 коп. в день), необходимо дневной рацион составить из 2 кг корма 1 и 3 кг корма 2.
- Тема 1. Классификация моделей.
- Тема 1. Классификация моделей.
- Основные признаки классификации моделей.
- Область использования.
- Учет в модели временного фактора.
- Способ представления модели.
- Тема 2. Классификация языков компьютерного моделирования.
- Тема 3. Этапы и цели компьютерного математического моделирования.
- Раздел 1. Задачи линейного программирования.
- Тема 1. Математическое программирование. Общий вид задач линейного программирования.
- Формулировка задачи.
- Геометрическая интерпретация задачи линейного программирования.
- Найти минимальное значение линейной функции
- Тема 2. Графический метод решения задач линейного программирования.
- Примеры задач, решаемых графическим методом.
- Обобщение графического метода решения задач линейного программирования.
- Тема 3. Симплекс - метод.
- Каноническая задача лп на максимум.
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса.
- Тема 4. Транспортная задача.
- 4.2 Составление опорного плана.
- 4.3 Метод потенциалов.
- Раздел 2. Теория графов.
- Тема 1. Основные понятия теории графов.
- Элементы множества V называются вершинами графа g (или узлами), элементы множества u-его ребрами. Вершины и ребра графа называют также его элементами и вместо VV и u u пишут Vg и ug.
- 1.2 Операции над графами.
- 1.3.Связность графов.
- 1.4 Эйлеровы графы.
- 1.5 Гамильтоновы графы.
- Тема 2. Поиск пути в графе.
- 2.2 Путь минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Дейкстры).
- 2.3 .Путь минимальной суммарной длины во взвешенном графе с произвольными весами для всех пар вершин (алгоритм Флойда).
- 2.4 Путь с минимальным количеством промежуточных вершин (волновой алгоритм).
- 2.5 Нахождение k путей минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Йена).
- Тема 3. Задачи о минимальном остове.
- 3.1 Деревья.
- 3.1 Построение минимального остовного дерева (алгоритм Краскала).
- 3.1 Деревья.
- 3.1 .Построение минимального остовного дерева (алгоритм Краскала).
- Раздел 3. Динамическое программирование.
- Тема 1. Метод динамического программирования.
- 1.2 Идеи метода динамического программирования
- 1.3 Выбор состава оборудования для технологической линии.
- Исходные данные для примера
- Тема 2. Задача инвестирования.
- Тема 3. Замена оборудования.
- Тема 4. Задача о загрузке.
- 4.2 Рекуррентные соотношения для процедур прямой и обратной прогонки.
- 4.3 Решение задачи о загрузке.
- Раздел 4. Системы массового обслуживания (смо). (8 часов).
- Тема 1. Основные понятия теории массового обслуживания.
- Тема 2. Простейшие смо и нахождение их параметров.
- Перечень характеристик систем массового обслуживания можно представить следующим образом:
- 2. Одноканальная смо с неограниченной очередью
- 3. Одноканальная смо с неограниченной очередью, простейшим потоком заявок и произвольным распределением времени обслуживания
- 4. Одноканальная смо с произвольным потоком заявок и произвольным распределением времени обслуживания
- Раздел 5. Имитационное моделирование.
- Тема 1. Простейшие задачи, решаемые методом имитационного моделирования.
- Тема 2. Основные понятия теории Марковских процессов.
- Тема 3. Метод Монте – Карло.
- Раздел 6. Прогнозирование.
- Тема 1. Основная идея прогнозирования. Методы прогнозирования
- Тема 2.Теории экспертных оценок.
- Раздел 7. Теория игр.
- Тема 1. Основные понятия теории игр.
- 1. 1 Понятие об играх и стратегиях
- Тема 2. Простейшие методы решения задач теории игр.
- Раздел 8. Элементы теории принятия решений. (2 часа).
- Основные понятия.
- Принятие решений в условиях полной неопределенности
- Принятие решений при проведении эксперимента.
- 2. Принятие решений в условиях полной неопределенности
- 2.1 Максиминный критерий Вальда.
- Критерий равновозможных состояний.
- 3. Принятие решений при проведении эксперимента.
- 3.1. Принятие решений в условиях неопределенности.
- 3.2. Использование смешанной стратегии
- 3.3. Принятие решений в условиях риска