logo
Лекции!

Примеры задач, решаемых графическим методом.

Решим графическим методом задачи использования сырья и составления рациона.

Задача использования сырья. Для изготовления двух видов продукции Р1 и Р2 используют три вида сырья: S1, S2, S3. Запасы сырья, количество единиц сырья, затрачиваемых на изготовление единицы продукци, а так же величина прибыли, получаемая от реализации единицы продукции, приведены в таблице 1.

Таблица .1.

Вид сырья

Запас сырья

Количество единиц сырья, идущих на изготовление единицы продукции

Р1

Р2

S1

20

2

5

S2

40

8

5

S3

30

5

6

Прибыль от единицы продукции, руб.

50

40

Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.

Решение.

Обозначим через х1 количество единиц продукции Р1, а через х2 – количество единиц продукции Р2. Тогда, учитывая количество единиц сырья, расходуемое на изготовление продукции, а так же запасы сырья, получим систему ограничений:

1 + 5х2 20

1 + 5х2 40

1 + 6х2 30

которая показывает, что количество сырья, расходуемое на изготовление продукции, не может превысит имеющихся запасов. Если продукция Р1 не выпускается, то х1=0; в противном случае x1 0. То же самое получаем и для продукции Р2. Таким образом, на неизвестные х1 и х2 должно быть наложено ограничение неотрицательности: х1 0, х2 0.

Конечную цель решаемой задачи – получение максимальной прибылипри реализации продукции – выразим как функцию двух переменных х1 и х2. Реализация х1 единиц продукции Р1 и х2 единиц продукции Р2 дает соответственно 50х1 и 40х2 руб. прибыли, суммарная прибыль Z = 50х1 + 40х2 (руб.)

Условиями не оговорена неделимость единица продукции, поэтому х1 и х2 (план выпуска продукции) могут быть и дробными числами.

Требуется найти такие х1 и х2, при которых функция Z достинает максимум, т.е. найти максимальное значение линейной функции Z = 50х1 + 40х2 при ограничениях

1 + 5х2 20

1 + 5х2 40

1 + 6х2 30

х1 0, х2 0.

Построим многоугольник решений.

Для этого в системе координат х1Ох2 на плоскости на плоскости изобразим граничные прямые

1 + 5х2 = 20 (L1)

1 + 5х2 = 40 (L2)

1 + 6х2 = 30 (L3)

х1 = 0, х2 = 0.

Взяв какую-нибудь точку, например, начало координат, установим, какую полуплоскость определяет соответствующее неравенство (эти полуплоскости на рис. 2.3 показаны стрелками). Многоугольником решений данной задачи является ограниченный пятиугольник ОАВСD. Для построения прямой 50х1 + 40х2 = 0 строим радиус-вектор N = (50;40) = 10(5;4) и через точку O проводим прямую, перпендикулярную ему. Построенную прямую Z = 0 перемещаем параллельно самой себе в направлении вектора N. Точка С лежит на пересечении прямых L1 и L2. Для определения ее координат решим систему уравнений

8x1 + 5х2 = 40

1 + 6х2 = 30

Оптимальный план задачи: х1 = 90/23 = 3,9; х2 = 40/23 = 1,7. Подставляя значения х1 и х2 в линейную функцию, получаем Zmax = 50 3,9 + 40 1,7 = 260,3

Таким образом, для того чтобы получить максимальную прибыль в размере 260,3 руб., необходимо запланировать производство 3,9 ед. продукции Р1 и 1,7 ед. продукции Р2.

Задача составления рациона. При откорме каждое животное ежедневно должно получать не менее 9 ед. питательного вещества S1, не менее 8 ед. вещества S2 и не менее 12 ед. вещества S3. Для составления рациона используют два вида корма. Содержание количества елиниц питательных веществ в 1 кг каждого вида корма и стоимость 1 кг корма приведены в таблице 2.

Таблица 2.

Питательные вещества

Количество единиц питательных веществ

в 1 кг корма.

Корм 1

Корм 2

S1

3

1

S2

1

2

S3

1

6

Стоимость 1 кг корма, коп.

4

6

Необходимо составить дневной рацион нужной питательности, причем затраты на него должны быть минимальными.

Решение.

Для составления математической модели обозначим через х1 и х2 соответственно количество килограммов корма 1 и 2 в дневном рационе. Принимая во внимание значения, приведенные в таблице 2.2, и условие, что дневной рацион удовлетворяет требуемой питательности только в случае, если количество единиц питательных веществ не меньше предусмотренного, получаем систему ограничений

1 + х2 9

х1 + 2х2 8

х1 + 6х2 12

х1 0, х2 0.

Если корм 1 не используется в рационе, то х1=0; в противном случае x1 0. Аналогично имеем х2 0. То есть должно выполняться условие неотрицательности переменных: х1 0, х2 0.

Цель данной задачи – добиться минимальных затрат на дневной рацион, поэтому общую стоимость рациона можно выразить в виде линейной функции Z = 4х1 + 6х2 (коп.) Требуется найти такие х1 и х2, при которых функция Z принимает минимальное. Таким образом, необходимо найти минимальное значение линейной функции Z = 4х1 + 6х2 при ограничениях

1 + х2 9

х1 + 2х2 8

х1 + 6х2 12

х1 0, х2 0.

Построим многоугольник решений. Для этого в системе координат х1Ох2 на плоскости изобразим граничные прямые

1 + х2 = 9 (L1)

х1 + 2х2 = 8 (L2)

х1 + 6х2 = 12 (L3)

х1 = 0, х2 = 0.

Взяв какую-нибудь точку, например, начало координат, установим, какую полуплоскость определяет соответствующее неравенство (эти полуплоскости на рис. 2.4 показаны стрелками). В результате получим неограниченную многоугольную область с угловыми точками А, В, С, D.

Для построения прямой 4х1 + 6х2 = 0 строим радиус-вектор N = (4;6) и через точку O проводим прямую, перпендикулярную ему. Построенную прямую Z = 0 перемещаем параллельно самой себе в направлении вектора N. Если прямую перемещать дальше в направлении вектора N, то значения линейной функции на многограннике решений возрастут, значит, в точке В линейная функция Z принимает минимальное значение.

Точка В лежит на пересечении прямых L1 и L2. Для определения ее координат решим систему уравнений

3x1 + х2 = 9

х1 + 2х2 = 8

Имеем: х1 = 2; х2 = 3. Подставляя значения х1 и х2 в линейную функцию, получаем Zmin = 4 2 + 6 3 = 26.

Таким образом, для того, чтобы обеспечить минимум затрат (26 коп. в день), необходимо дневной рацион составить из 2 кг корма 1 и 3 кг корма 2.