3.2. Использование смешанной стратегии
Стратегия S* называется смешанной, если она представлена в виде выпуклой комбинации двух других стратегий,
S* = сSm1 + (1 - с)Sm2, 0<с<1, m1, m2 {1, 2, …, t}.
Это определение базируется на понятии выпуклой комбинации точек [14]. Переход к смешанной стратегии осуществляется с целью повышения гарантированной средней полезности.
Стратегии рассмотренного выше примера изобразим точками на плоскости с координатами , , i=1,3,4,7,8 (рис. 2).
П о рис. 2 видно, что если взять в определенных пропорциях стратегии S4 и S8, то получим смешанную стратегию, лучшую по сравнению со стратегией S7. Проведем биссектрису I-го координатного угла и найдем точку пересечения ее с отрезком [S4, S8] –– точку .
Запишем уравнение прямой, проходящей через точки S4(7.6; 4.9), S8 (4;7) ,
,
которое приводится к виду:
.
Из этого уравнения находим координаты точки , для которой ,
.
Так как , то стратегия лучше стратегии S7, гарантирующей 5.2 ед. полезности, S*>S7. Теперь остается представить стратегию в виде выпуклой комбинации стратегий S4, S8,
S* = cS4 + (1 – c)S8, 0 < c <1. (10)
Для определения значения параметра достаточно записать уравнение (10) для абсцисс входящих в него точек,
из которого получаем . Тогда равенство (10) принимает вид:
. (11)
Так как , , то в силу равенства (11) имеем
.
Практически смешанную стратегию S* можно реализовать так. Если результат эксперимента есть z2 или z3, то используется операция a2. Если же результат эксперимента есть z1, то с помощью подходящего случайного механизма с вероятностью используется операция a1, и с вероятностью –– операция а2. Основой случайного механизма могут служить 19 одинаковых карточек, на 10–и из которых записан символ а1, а на 9–и –– символ а2. Из этого набора 19–и карточек случайно выбирается одна и используется та операция, символ, которой изображен на этой карточке.
- Тема 1. Классификация моделей.
- Тема 1. Классификация моделей.
- Основные признаки классификации моделей.
- Область использования.
- Учет в модели временного фактора.
- Способ представления модели.
- Тема 2. Классификация языков компьютерного моделирования.
- Тема 3. Этапы и цели компьютерного математического моделирования.
- Раздел 1. Задачи линейного программирования.
- Тема 1. Математическое программирование. Общий вид задач линейного программирования.
- Формулировка задачи.
- Геометрическая интерпретация задачи линейного программирования.
- Найти минимальное значение линейной функции
- Тема 2. Графический метод решения задач линейного программирования.
- Примеры задач, решаемых графическим методом.
- Обобщение графического метода решения задач линейного программирования.
- Тема 3. Симплекс - метод.
- Каноническая задача лп на максимум.
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса.
- Тема 4. Транспортная задача.
- 4.2 Составление опорного плана.
- 4.3 Метод потенциалов.
- Раздел 2. Теория графов.
- Тема 1. Основные понятия теории графов.
- Элементы множества V называются вершинами графа g (или узлами), элементы множества u-его ребрами. Вершины и ребра графа называют также его элементами и вместо VV и u u пишут Vg и ug.
- 1.2 Операции над графами.
- 1.3.Связность графов.
- 1.4 Эйлеровы графы.
- 1.5 Гамильтоновы графы.
- Тема 2. Поиск пути в графе.
- 2.2 Путь минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Дейкстры).
- 2.3 .Путь минимальной суммарной длины во взвешенном графе с произвольными весами для всех пар вершин (алгоритм Флойда).
- 2.4 Путь с минимальным количеством промежуточных вершин (волновой алгоритм).
- 2.5 Нахождение k путей минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Йена).
- Тема 3. Задачи о минимальном остове.
- 3.1 Деревья.
- 3.1 Построение минимального остовного дерева (алгоритм Краскала).
- 3.1 Деревья.
- 3.1 .Построение минимального остовного дерева (алгоритм Краскала).
- Раздел 3. Динамическое программирование.
- Тема 1. Метод динамического программирования.
- 1.2 Идеи метода динамического программирования
- 1.3 Выбор состава оборудования для технологической линии.
- Исходные данные для примера
- Тема 2. Задача инвестирования.
- Тема 3. Замена оборудования.
- Тема 4. Задача о загрузке.
- 4.2 Рекуррентные соотношения для процедур прямой и обратной прогонки.
- 4.3 Решение задачи о загрузке.
- Раздел 4. Системы массового обслуживания (смо). (8 часов).
- Тема 1. Основные понятия теории массового обслуживания.
- Тема 2. Простейшие смо и нахождение их параметров.
- Перечень характеристик систем массового обслуживания можно представить следующим образом:
- 2. Одноканальная смо с неограниченной очередью
- 3. Одноканальная смо с неограниченной очередью, простейшим потоком заявок и произвольным распределением времени обслуживания
- 4. Одноканальная смо с произвольным потоком заявок и произвольным распределением времени обслуживания
- Раздел 5. Имитационное моделирование.
- Тема 1. Простейшие задачи, решаемые методом имитационного моделирования.
- Тема 2. Основные понятия теории Марковских процессов.
- Тема 3. Метод Монте – Карло.
- Раздел 6. Прогнозирование.
- Тема 1. Основная идея прогнозирования. Методы прогнозирования
- Тема 2.Теории экспертных оценок.
- Раздел 7. Теория игр.
- Тема 1. Основные понятия теории игр.
- 1. 1 Понятие об играх и стратегиях
- Тема 2. Простейшие методы решения задач теории игр.
- Раздел 8. Элементы теории принятия решений. (2 часа).
- Основные понятия.
- Принятие решений в условиях полной неопределенности
- Принятие решений при проведении эксперимента.
- 2. Принятие решений в условиях полной неопределенности
- 2.1 Максиминный критерий Вальда.
- Критерий равновозможных состояний.
- 3. Принятие решений при проведении эксперимента.
- 3.1. Принятие решений в условиях неопределенности.
- 3.2. Использование смешанной стратегии
- 3.3. Принятие решений в условиях риска