Тема 1. Основная идея прогнозирования. Методы прогнозирования
Методы прогнозирования.
Большинство принимаемых предпринимателями решений относятся к будущим событиям, которые невозможно контролировать сегодня. Однако их оценка и предсказание необходимы для перспективного планирования бизнеса. При прогнозировании используются как накопленный опыт прошлого, так и текущие допущения относительно развития событий в будущем. Методы прогнозирования бывают количественные и качественные.
Прогнозы в маркетинге различаются по срокам предсказания:
-
оперативный (месяц, квартал, полугодие)
-
краткосрочный (до года)
-
среднесрочный (до 3-5 лет)
-
долгосрочный (более 5 лет)
Количественные методы прогнозирования основываются на том, что тенденция развития событий в будущем связана с развитием ситуации в прошлом: метод экстраполяции (анализ временных рядов, трендов), при котором тенденции прошлого продлеваются в будущее развитие ситуации. Такой метод используется для оценки спроса на товары, объема сбыта, сезонности и др. Применение этого метода возможно лишь в ситуации, когда рыночная ситуация не изменяется слишком быстрыми темпами.
-
анализ корреляций, рассматривающий зависимость между различными рассматриваемыми факторами и другими переменными. Метод используется для рассмотрения влияния нескольких переменных на прогнозируемый параметр. Применение такого метода является достаточно сложным и дорогостоящим, однако в упрощенном виде его можно использовать и для практического бизнеса
-
нормативный метод, базирующийся на оценке потребления товара в будущем в соответствии с его рациональными или нормативными уровнями. Здесь учитываются факторы изменения размера и состава целевого рынка.
Качественные методы прогнозирования используются при недостатке исходной информации, либо сложности ее применения и основываются на мнении экспертов:
-
оценки сбытовиков, работающих с потребителями и знающих их реакцию и поведение на рынке
-
оценка ожидания потребителей, основанной на результатах опроса клиентов компании в отношении их потребностей в будущем
-
мнений специалистов из различных, но связанных областей деятельности. После заполнения анкет и ознакомления с мнением других экспертов специалисты делают новые оценки. Процедура может повторяться несколько раз для получения единого мнения по рассматриваемому вопросу.
- Тема 1. Классификация моделей.
- Тема 1. Классификация моделей.
- Основные признаки классификации моделей.
- Область использования.
- Учет в модели временного фактора.
- Способ представления модели.
- Тема 2. Классификация языков компьютерного моделирования.
- Тема 3. Этапы и цели компьютерного математического моделирования.
- Раздел 1. Задачи линейного программирования.
- Тема 1. Математическое программирование. Общий вид задач линейного программирования.
- Формулировка задачи.
- Геометрическая интерпретация задачи линейного программирования.
- Найти минимальное значение линейной функции
- Тема 2. Графический метод решения задач линейного программирования.
- Примеры задач, решаемых графическим методом.
- Обобщение графического метода решения задач линейного программирования.
- Тема 3. Симплекс - метод.
- Каноническая задача лп на максимум.
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса.
- Тема 4. Транспортная задача.
- 4.2 Составление опорного плана.
- 4.3 Метод потенциалов.
- Раздел 2. Теория графов.
- Тема 1. Основные понятия теории графов.
- Элементы множества V называются вершинами графа g (или узлами), элементы множества u-его ребрами. Вершины и ребра графа называют также его элементами и вместо VV и u u пишут Vg и ug.
- 1.2 Операции над графами.
- 1.3.Связность графов.
- 1.4 Эйлеровы графы.
- 1.5 Гамильтоновы графы.
- Тема 2. Поиск пути в графе.
- 2.2 Путь минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Дейкстры).
- 2.3 .Путь минимальной суммарной длины во взвешенном графе с произвольными весами для всех пар вершин (алгоритм Флойда).
- 2.4 Путь с минимальным количеством промежуточных вершин (волновой алгоритм).
- 2.5 Нахождение k путей минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Йена).
- Тема 3. Задачи о минимальном остове.
- 3.1 Деревья.
- 3.1 Построение минимального остовного дерева (алгоритм Краскала).
- 3.1 Деревья.
- 3.1 .Построение минимального остовного дерева (алгоритм Краскала).
- Раздел 3. Динамическое программирование.
- Тема 1. Метод динамического программирования.
- 1.2 Идеи метода динамического программирования
- 1.3 Выбор состава оборудования для технологической линии.
- Исходные данные для примера
- Тема 2. Задача инвестирования.
- Тема 3. Замена оборудования.
- Тема 4. Задача о загрузке.
- 4.2 Рекуррентные соотношения для процедур прямой и обратной прогонки.
- 4.3 Решение задачи о загрузке.
- Раздел 4. Системы массового обслуживания (смо). (8 часов).
- Тема 1. Основные понятия теории массового обслуживания.
- Тема 2. Простейшие смо и нахождение их параметров.
- Перечень характеристик систем массового обслуживания можно представить следующим образом:
- 2. Одноканальная смо с неограниченной очередью
- 3. Одноканальная смо с неограниченной очередью, простейшим потоком заявок и произвольным распределением времени обслуживания
- 4. Одноканальная смо с произвольным потоком заявок и произвольным распределением времени обслуживания
- Раздел 5. Имитационное моделирование.
- Тема 1. Простейшие задачи, решаемые методом имитационного моделирования.
- Тема 2. Основные понятия теории Марковских процессов.
- Тема 3. Метод Монте – Карло.
- Раздел 6. Прогнозирование.
- Тема 1. Основная идея прогнозирования. Методы прогнозирования
- Тема 2.Теории экспертных оценок.
- Раздел 7. Теория игр.
- Тема 1. Основные понятия теории игр.
- 1. 1 Понятие об играх и стратегиях
- Тема 2. Простейшие методы решения задач теории игр.
- Раздел 8. Элементы теории принятия решений. (2 часа).
- Основные понятия.
- Принятие решений в условиях полной неопределенности
- Принятие решений при проведении эксперимента.
- 2. Принятие решений в условиях полной неопределенности
- 2.1 Максиминный критерий Вальда.
- Критерий равновозможных состояний.
- 3. Принятие решений при проведении эксперимента.
- 3.1. Принятие решений в условиях неопределенности.
- 3.2. Использование смешанной стратегии
- 3.3. Принятие решений в условиях риска