3.3. Принятие решений в условиях риска
К условиям, перечисленным в подпараграфе 3.1, добавляется еще одно – значения априорных вероятностей состояний окружающей среды (природы):
p(Q1), p(Q2), ..., p(Qn). (12)
Тогда для каждой стратегии определяется усредненная по всем состояниям природы средняя полезность по формуле:
(13)
U(Si,Qj) – полезность стратегии при состоянии природы , которая находится по формуле (9). Затем из множества , , выделяется максимальный элемент,
, .Стратегия , обладающая максимальной средней полезностью , называется байесовской стратегией,
, .
Пусть в рассмотренном ранее примере р(Q1) = 0.6, p(Q2) = 0.4. Используя данные табл. 9. и формулу (13), вычислим среднюю полезность для каждой допустимой стратегии,
= 100.6 + 00.4 = 6,
= 8.80.6 + 50.4 = 6.68,
= 7.60.6 + 4.90.4 = 6.52,
= 5.20.6 +5.60.4 =5.36,
= 40.6 + 70.4 =5.2 .
Затем найдем наибольшее число из полученных пяти чисел,
Следовательно, оптимальной стратегией является стратегия , обладающая максимальной средней полезностью, равной 6.68 ед.
Заметим, что стратегия является байесовской для конкретных значений априорных вероятностей: р(Q1) = 0.6, p(Q2) = 0.4. При других значениях р(Q1), р(Q2) байесовской может быть и другая стратегия. Так, при р(Q1) = 0.5, p(Q2) = 0.5 байесовской является стратегия .
Проведение эксперимента в рассмотренной ситуации выгодно. Действительно, если эксперимент не проводить, то по данным табл.7 имеем:
Байесовской операцией (стратегией) является операция а1, средняя полезность которой равна 6 ед.
Для дальнейших рассуждений нам понадобиться объединить выражения (13), (9) в одно,
.
Меняя порядок суммирования в правой части последнего равенства, получим
(14)
Из этого равенства следует, что при выборе оптимальной стратегии максимизация сводится к максимизации выражения в квадратных скобках в правой части (14), т.е. для каждого результата эксперимента zβ максимизация полезности Uβ(ai) сводится к выбору такой операции , которая максимизирует выражение в квадратных скобках.
ЛИТЕРАТУРА.
-
Венцель Е.С. Исследование операций. Задачи, принципы, методология. - М: Наука, 1980.
-
Дегтярев Ю.П. Исследование операций. - М.: Высшая школа, 1986.
-
Корбут А.А., Финкелыптейн Ю.Ю. Дискретное программирование. -М.:Мир, 1978.
-
Кристофвдес Н. Теория графов. Алгоритмический подход. - М.: Мир, 1978.
-
Липский В. Комбинаторика для программистов. - М.: Мир, 1988.
-
Клейнрок Л. Теория массового обслуживания. - М.: Машиностроение, 1979.
-
Ивченко Г.И. и др. Теория массового обслуживания. - М. Высшая школа, 1982.
-
Шенок Р. Имитационное моделирование систем - искусство и наука.-М.: Мир, 1978.
-
Гудман С, Хидегниеми С. Введение в разработку и анализ алгоритмов. - М.: Мир, 1981.
-
Гмурман В.Е. Теория вероятностей и математическая статистика. Москва «Высшая школа» 1998.
- Тема 1. Классификация моделей.
- Тема 1. Классификация моделей.
- Основные признаки классификации моделей.
- Область использования.
- Учет в модели временного фактора.
- Способ представления модели.
- Тема 2. Классификация языков компьютерного моделирования.
- Тема 3. Этапы и цели компьютерного математического моделирования.
- Раздел 1. Задачи линейного программирования.
- Тема 1. Математическое программирование. Общий вид задач линейного программирования.
- Формулировка задачи.
- Геометрическая интерпретация задачи линейного программирования.
- Найти минимальное значение линейной функции
- Тема 2. Графический метод решения задач линейного программирования.
- Примеры задач, решаемых графическим методом.
- Обобщение графического метода решения задач линейного программирования.
- Тема 3. Симплекс - метод.
- Каноническая задача лп на максимум.
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса.
- Тема 4. Транспортная задача.
- 4.2 Составление опорного плана.
- 4.3 Метод потенциалов.
- Раздел 2. Теория графов.
- Тема 1. Основные понятия теории графов.
- Элементы множества V называются вершинами графа g (или узлами), элементы множества u-его ребрами. Вершины и ребра графа называют также его элементами и вместо VV и u u пишут Vg и ug.
- 1.2 Операции над графами.
- 1.3.Связность графов.
- 1.4 Эйлеровы графы.
- 1.5 Гамильтоновы графы.
- Тема 2. Поиск пути в графе.
- 2.2 Путь минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Дейкстры).
- 2.3 .Путь минимальной суммарной длины во взвешенном графе с произвольными весами для всех пар вершин (алгоритм Флойда).
- 2.4 Путь с минимальным количеством промежуточных вершин (волновой алгоритм).
- 2.5 Нахождение k путей минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Йена).
- Тема 3. Задачи о минимальном остове.
- 3.1 Деревья.
- 3.1 Построение минимального остовного дерева (алгоритм Краскала).
- 3.1 Деревья.
- 3.1 .Построение минимального остовного дерева (алгоритм Краскала).
- Раздел 3. Динамическое программирование.
- Тема 1. Метод динамического программирования.
- 1.2 Идеи метода динамического программирования
- 1.3 Выбор состава оборудования для технологической линии.
- Исходные данные для примера
- Тема 2. Задача инвестирования.
- Тема 3. Замена оборудования.
- Тема 4. Задача о загрузке.
- 4.2 Рекуррентные соотношения для процедур прямой и обратной прогонки.
- 4.3 Решение задачи о загрузке.
- Раздел 4. Системы массового обслуживания (смо). (8 часов).
- Тема 1. Основные понятия теории массового обслуживания.
- Тема 2. Простейшие смо и нахождение их параметров.
- Перечень характеристик систем массового обслуживания можно представить следующим образом:
- 2. Одноканальная смо с неограниченной очередью
- 3. Одноканальная смо с неограниченной очередью, простейшим потоком заявок и произвольным распределением времени обслуживания
- 4. Одноканальная смо с произвольным потоком заявок и произвольным распределением времени обслуживания
- Раздел 5. Имитационное моделирование.
- Тема 1. Простейшие задачи, решаемые методом имитационного моделирования.
- Тема 2. Основные понятия теории Марковских процессов.
- Тема 3. Метод Монте – Карло.
- Раздел 6. Прогнозирование.
- Тема 1. Основная идея прогнозирования. Методы прогнозирования
- Тема 2.Теории экспертных оценок.
- Раздел 7. Теория игр.
- Тема 1. Основные понятия теории игр.
- 1. 1 Понятие об играх и стратегиях
- Тема 2. Простейшие методы решения задач теории игр.
- Раздел 8. Элементы теории принятия решений. (2 часа).
- Основные понятия.
- Принятие решений в условиях полной неопределенности
- Принятие решений при проведении эксперимента.
- 2. Принятие решений в условиях полной неопределенности
- 2.1 Максиминный критерий Вальда.
- Критерий равновозможных состояний.
- 3. Принятие решений при проведении эксперимента.
- 3.1. Принятие решений в условиях неопределенности.
- 3.2. Использование смешанной стратегии
- 3.3. Принятие решений в условиях риска