Обобщение графического метода решения задач линейного программирования.
Вообще, с помощью графического метода может быть решена задача линейного программирования, система ограничений которой содержит n неизвестных и m линейно независимых уравнений, если N и M связаны соотношением N – M = 2.
Действительно, пусть поставлена задача линейного программирования.
Найти минимальное значение линейной функции Z = С1х1+С2х2+... +СNxN при ограничениях
a11x1 + a22x2 + ... + a1NХN = b1
a21x1 + a22x2 + ... + a2NХN = b2 (2.3)
. . . . . . . . . . . . . . . . . . . . . . . .
aМ1x1 + aМ2x2 + ... + aМNХN = bМ
xj 0 (j = 1, 2, ..., N)
где все уравнения линейно независимы и выполняется cсоотношение N - M = 2.
Используя метод Жордана - Гаусса, производим M исключений, в результате которых базисными неизвестными оказались, например, M первых неизвестных х1, х2, ..., хM, а свободными - два последних: хМ+1, и хN, т. е. система ограничений приняла вид
x1 + a1,М+1xМ+1 + a1NХN = b1
x2 + a2,М+1xМ+1 + a2NХN = b2 (2.4)
. . . . . . . . . . . . . . . . . . . . . . . .
xМ + aМ, М+1x2 + aМNХN = bМ
xj 0 (j = 1, 2, ..., N)
С помощью уравнений преобразованной системы выражаем линейную функцию только через свободные неизвестные и, учитывая, что все базисные неизвестные - неотрицательные: хj 0 (j = 1, 2, ..., M), отбрасываем их, переходя к системе ограничений, выраженных в виде неравенств. Таким образом, окончательно получаем следующую задачу.
Найти минимальное значение линейной функции Z = СМ+1хМ+1+СNxN при ограничениях
a1,М+1xМ+1 + a1NХN b1
a2,М+1xМ+1 + a2NХN b2
. . . . . . . . . . . . . . . . . . .
aМ,М+1xМ+1 + aМNХN bМ
xМ+1 0, хN 0
Преобразованная задача содержит два неизвестных; решая ее графическим методом, находим оптимальные значения xМ+1 и хN, а затем, подставляя их в (2.4), находим оптимальные значения х1, х2, ..., хM.
Пример.
Графическим методом найти оптимальный план задачи линейного программирования, при котором линейная функция Z = 2х1 - х2 + х3 - 3х4 + 4х5 достигает максимального значения при ограничениях
х1 - х2 + 3х3 - 18х4 + 2х5 = -4
2х1 - х2 + 4х3 - 21х4 + 4х5 = 2
3х1 - 2х2 + 8х3 - 43х4 + 11х5 = 38
xj 0 (j = 1, 2, ..., 5)
Решение.
Используя метод Жордана-Гаусса, произведем три полных исключения неизвестных х1, х2, х3. В результате приходим к системе
х1 + х4 - 3х5 = 6
х2 + 7х4 + 10х5 = 70
х3 - 4х4 + 5х5 = 20
Откуда x1 = 6 – х4 + 3x5, х2 = 70 – 7х4-10х5, х3 = 20 + 4х4 -5х5.
Подставляя эти значения в функцию и отбрасывая в системе базисные переменные, получаем задачу, выраженную только через свободные переменные х4 и х5: найти максимальное значение линейной функции Z = 6х4 + 15х5 – 38 при ограничениях
х4 - х5 6
7х4 + 10х5 70
- 4х4 + 5х5 20
х4 0, х5 0.
Построим многогранник решений и линейную функцию в системе координат х4Ох5 заключаем, что линейная функция принимает максимальное значение в угловой точке В, которая лежит на пересечении прямых 2 и 3. В результате решения системы
7х4 + 10х5 = 70
-4х4 + 5х5 = 20
находим: х4 = 2, х5 = 28/5. Максимальное значение функции Zmax = -38 + 12 + 84 = 58. Для отыскания оптимального плана исходной задачи подставляем найденные значения х4 и х5. Окончательно получаем: х1 = 104/5, х2 = 0, х3 = 0, х4 = 2, х5 = 28/5.
- Тема 1. Классификация моделей.
- Тема 1. Классификация моделей.
- Основные признаки классификации моделей.
- Область использования.
- Учет в модели временного фактора.
- Способ представления модели.
- Тема 2. Классификация языков компьютерного моделирования.
- Тема 3. Этапы и цели компьютерного математического моделирования.
- Раздел 1. Задачи линейного программирования.
- Тема 1. Математическое программирование. Общий вид задач линейного программирования.
- Формулировка задачи.
- Геометрическая интерпретация задачи линейного программирования.
- Найти минимальное значение линейной функции
- Тема 2. Графический метод решения задач линейного программирования.
- Примеры задач, решаемых графическим методом.
- Обобщение графического метода решения задач линейного программирования.
- Тема 3. Симплекс - метод.
- Каноническая задача лп на максимум.
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса.
- Тема 4. Транспортная задача.
- 4.2 Составление опорного плана.
- 4.3 Метод потенциалов.
- Раздел 2. Теория графов.
- Тема 1. Основные понятия теории графов.
- Элементы множества V называются вершинами графа g (или узлами), элементы множества u-его ребрами. Вершины и ребра графа называют также его элементами и вместо VV и u u пишут Vg и ug.
- 1.2 Операции над графами.
- 1.3.Связность графов.
- 1.4 Эйлеровы графы.
- 1.5 Гамильтоновы графы.
- Тема 2. Поиск пути в графе.
- 2.2 Путь минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Дейкстры).
- 2.3 .Путь минимальной суммарной длины во взвешенном графе с произвольными весами для всех пар вершин (алгоритм Флойда).
- 2.4 Путь с минимальным количеством промежуточных вершин (волновой алгоритм).
- 2.5 Нахождение k путей минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Йена).
- Тема 3. Задачи о минимальном остове.
- 3.1 Деревья.
- 3.1 Построение минимального остовного дерева (алгоритм Краскала).
- 3.1 Деревья.
- 3.1 .Построение минимального остовного дерева (алгоритм Краскала).
- Раздел 3. Динамическое программирование.
- Тема 1. Метод динамического программирования.
- 1.2 Идеи метода динамического программирования
- 1.3 Выбор состава оборудования для технологической линии.
- Исходные данные для примера
- Тема 2. Задача инвестирования.
- Тема 3. Замена оборудования.
- Тема 4. Задача о загрузке.
- 4.2 Рекуррентные соотношения для процедур прямой и обратной прогонки.
- 4.3 Решение задачи о загрузке.
- Раздел 4. Системы массового обслуживания (смо). (8 часов).
- Тема 1. Основные понятия теории массового обслуживания.
- Тема 2. Простейшие смо и нахождение их параметров.
- Перечень характеристик систем массового обслуживания можно представить следующим образом:
- 2. Одноканальная смо с неограниченной очередью
- 3. Одноканальная смо с неограниченной очередью, простейшим потоком заявок и произвольным распределением времени обслуживания
- 4. Одноканальная смо с произвольным потоком заявок и произвольным распределением времени обслуживания
- Раздел 5. Имитационное моделирование.
- Тема 1. Простейшие задачи, решаемые методом имитационного моделирования.
- Тема 2. Основные понятия теории Марковских процессов.
- Тема 3. Метод Монте – Карло.
- Раздел 6. Прогнозирование.
- Тема 1. Основная идея прогнозирования. Методы прогнозирования
- Тема 2.Теории экспертных оценок.
- Раздел 7. Теория игр.
- Тема 1. Основные понятия теории игр.
- 1. 1 Понятие об играх и стратегиях
- Тема 2. Простейшие методы решения задач теории игр.
- Раздел 8. Элементы теории принятия решений. (2 часа).
- Основные понятия.
- Принятие решений в условиях полной неопределенности
- Принятие решений при проведении эксперимента.
- 2. Принятие решений в условиях полной неопределенности
- 2.1 Максиминный критерий Вальда.
- Критерий равновозможных состояний.
- 3. Принятие решений при проведении эксперимента.
- 3.1. Принятие решений в условиях неопределенности.
- 3.2. Использование смешанной стратегии
- 3.3. Принятие решений в условиях риска