2.1 Максиминный критерий Вальда.
Согласно этому критерию игра с природой ведется как игра с разумным, причем агрессивным противником, делающим все для того, чтобы помешать нам достигнуть успеха. Оптимальной считается стратегия, при которой гарантируется выигрыш в любом случае не меньший, чем «нижняя цена игры с природой».
Для каждой операции аi, i = 1, 2, ..., m, находим наихудший исход,
. (3а)
Затем определяется то значение i0, при котором величина максимальна,
. (3в)
Принимаемое решение – выбор наилучшей операции из множества исходных (1). Равенства (3а), (3в) можно объединить в одно
. (4)
Рассмотренная операция максимин соответствует лучшему из худших исходов. Если руководствоваться этим критерием, олицетворяющим «позицию, крайнего пессимизма», надо, всегда ориентироваться на худшие условия, зная наверняка, что «хуже этого не будет». Критерий максимина является чисто перестраховочным, поскольку природа не может быть сознательным противником. Очевидно, такой подход - естественный для того, кто очень боится проиграть, - не является единственно возможным, но как крайний случай он заслуживает рассмотрения. Максиминную операцию использует только крайний пессимист, не желающий идти ни на какой риск. Обычно такие люди довольствуются малым и предпочитают спокойную жизнь. Критерий минимакса сожалений Сэвнджа.
Этот критерий — тоже крайне пессимистический, но при выборе оптимальной стратегии советует ориентироваться не на выигрыш, а на риск. Выбирается в качестве оптимальной та стратегия, при которой величина риска (сожаления) в наихудших условиях минимальна. Сожаление (риска) в ТПР – потери в результате упущенных возможностей.
Пусть природа находится в состоянии Qs найдем максимальный элемент s-го столбца табл. 1,
.
Мера сожаления определяется как разность:
где если если Тогда при состоянии природы Qs лучшей операцией является : для нее сожаление равно нулю. Изменяя последовательно значения s, s = 1,2,…, n, получим сожаление для каждой операции ai, i=1,2,…, m, при любом состояния природы Qs, s=1,2,…, n. Матрица сожалений представлена в табл. 2.
Для принятия решения к табл. 2 применяется критерий минимакса (minmax): для каждой операции ai, i=1,2,…, m, находится наибольшее сожаление,
Таблица 2
Qj ai | Q1 | Q2 | … | Qn |
a1 | 11 | 12 | … | 1n |
a2 | 21 | 22 | … | 2n |
… | … | … | … | … |
am | m1 | m2 | … | mn |
Затем среди членов последовательности , i=1,2,…, m, s = 1,2,…, n, находится минимальный
Последние два равенства соединим в одно:
Принимаемое решение – наилучшая операция
Сущность такого подхода в том, чтобы всячески избегать большого риска при принятии решения. В смысле «пессимизма» критерий Сэвиджа сходен с критерием Вальда, но самый «пессимизм» здесь понимается по-другому.
- Тема 1. Классификация моделей.
- Тема 1. Классификация моделей.
- Основные признаки классификации моделей.
- Область использования.
- Учет в модели временного фактора.
- Способ представления модели.
- Тема 2. Классификация языков компьютерного моделирования.
- Тема 3. Этапы и цели компьютерного математического моделирования.
- Раздел 1. Задачи линейного программирования.
- Тема 1. Математическое программирование. Общий вид задач линейного программирования.
- Формулировка задачи.
- Геометрическая интерпретация задачи линейного программирования.
- Найти минимальное значение линейной функции
- Тема 2. Графический метод решения задач линейного программирования.
- Примеры задач, решаемых графическим методом.
- Обобщение графического метода решения задач линейного программирования.
- Тема 3. Симплекс - метод.
- Каноническая задача лп на максимум.
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса
- Вспомогательная задача лп.
- Алгоритм метода искусственного базиса.
- Тема 4. Транспортная задача.
- 4.2 Составление опорного плана.
- 4.3 Метод потенциалов.
- Раздел 2. Теория графов.
- Тема 1. Основные понятия теории графов.
- Элементы множества V называются вершинами графа g (или узлами), элементы множества u-его ребрами. Вершины и ребра графа называют также его элементами и вместо VV и u u пишут Vg и ug.
- 1.2 Операции над графами.
- 1.3.Связность графов.
- 1.4 Эйлеровы графы.
- 1.5 Гамильтоновы графы.
- Тема 2. Поиск пути в графе.
- 2.2 Путь минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Дейкстры).
- 2.3 .Путь минимальной суммарной длины во взвешенном графе с произвольными весами для всех пар вершин (алгоритм Флойда).
- 2.4 Путь с минимальным количеством промежуточных вершин (волновой алгоритм).
- 2.5 Нахождение k путей минимальной суммарной длины во взвешенном графе с неотрицательными весами (алгоритм Йена).
- Тема 3. Задачи о минимальном остове.
- 3.1 Деревья.
- 3.1 Построение минимального остовного дерева (алгоритм Краскала).
- 3.1 Деревья.
- 3.1 .Построение минимального остовного дерева (алгоритм Краскала).
- Раздел 3. Динамическое программирование.
- Тема 1. Метод динамического программирования.
- 1.2 Идеи метода динамического программирования
- 1.3 Выбор состава оборудования для технологической линии.
- Исходные данные для примера
- Тема 2. Задача инвестирования.
- Тема 3. Замена оборудования.
- Тема 4. Задача о загрузке.
- 4.2 Рекуррентные соотношения для процедур прямой и обратной прогонки.
- 4.3 Решение задачи о загрузке.
- Раздел 4. Системы массового обслуживания (смо). (8 часов).
- Тема 1. Основные понятия теории массового обслуживания.
- Тема 2. Простейшие смо и нахождение их параметров.
- Перечень характеристик систем массового обслуживания можно представить следующим образом:
- 2. Одноканальная смо с неограниченной очередью
- 3. Одноканальная смо с неограниченной очередью, простейшим потоком заявок и произвольным распределением времени обслуживания
- 4. Одноканальная смо с произвольным потоком заявок и произвольным распределением времени обслуживания
- Раздел 5. Имитационное моделирование.
- Тема 1. Простейшие задачи, решаемые методом имитационного моделирования.
- Тема 2. Основные понятия теории Марковских процессов.
- Тема 3. Метод Монте – Карло.
- Раздел 6. Прогнозирование.
- Тема 1. Основная идея прогнозирования. Методы прогнозирования
- Тема 2.Теории экспертных оценок.
- Раздел 7. Теория игр.
- Тема 1. Основные понятия теории игр.
- 1. 1 Понятие об играх и стратегиях
- Тема 2. Простейшие методы решения задач теории игр.
- Раздел 8. Элементы теории принятия решений. (2 часа).
- Основные понятия.
- Принятие решений в условиях полной неопределенности
- Принятие решений при проведении эксперимента.
- 2. Принятие решений в условиях полной неопределенности
- 2.1 Максиминный критерий Вальда.
- Критерий равновозможных состояний.
- 3. Принятие решений при проведении эксперимента.
- 3.1. Принятие решений в условиях неопределенности.
- 3.2. Использование смешанной стратегии
- 3.3. Принятие решений в условиях риска