7.Етапи економіко-математичного моделювання
Побудова ЕММ у загальному випадку складається з розглянутих далі етапів.
1. Постановка економічної проблеми та її якісний аналіз. На цьому етапі потрібно сформулювати сутність проблеми, визначити передумови й висловити припущення. Необхідно виокремити найважливіші властивості об’єкта моделювання, вивчити його структуру, дослідити взаємозв’язки між його елементами, а також хоча б попередньо сформулювати гіпотези, що пояснюють поводження й розвиток об’єкта (динаміку руху), дослідити його зв’язки із зовнішнім середовищем тощо.
При цьому складні об’єкти розбиваються на частини (елементи) окремого дослідження: визначаються зв’язки та логічні спів- відношення між ними, їхні кількісні та якісні властивості. Зазначені дії становлять етап системного аналізу задачі, у результаті якого об’єкт подається у вигляді системи.
2. Побудова математичної моделі. Цей етап полягає у формалізації економічної моделі, тобто вираженні її у вигляді кон-кретних математичних залежностей (функцій, рівнянь, нерівностей тощо). Процес побудови моделі складається з кількох стадій. Спочатку визначають тип економіко-математичної моделі, вивчають можливості її застосування в розглядуваному конкретному випадку, уточнюють перелік змінних та параметрів, форми зв’язку між ними. Для складних об’єктів доцільно будувати кілька різноаспектних моделей.
3. Математичний аналіз моделі. На цьому етапі суто математичними прийомами досліджують загальні властивості моделей та розв’язків. Може статися, що раніше виконаний системний аналіз привів до такого набору елементів, властивостей і співвідношень, для якого немає прийнятного методу розв’язання задачі. Тоді доводиться повертатися до етапу системного аналізу. Важливим моментом є доведення існування розв’язків сформульованої задачі. У процесі аналітичного аналізу з’ясовують кількість розв’язків (єдиний чи неєдиний), визначають змінні та параметри, які можуть входити до розв’язку, а також межі та тенденції їх зміни.
Проте моделі складних економічних об’єктів дуже погано піддаються аналітичному дослідженню. У таких випадках переходять до чисельних методів дослідження. Як правило, задачі, що виникають в економічній практиці, намагаються звести до відомих моделей, для яких розроблено методи й алгоритми розв’язання.
4. Підготовка вихідної інформації. В економічних задачах це, як правило, найбільш трудомісткий етап моделювання, оскіль ки тут замало самого лише пасивного збору даних. Математич- не моделювання висуває жорсткі вимоги до якості інформації. У процесі підготовки інформації використовуються методи теорії ймовірностей, математичної статистики, а також економічної статистики для агрегування, групування даних, оцінювання вірогідності даних тощо.
У процесі системного економіко-математичного моделювання результати функціонування одних моделей виступають вихідною інформацією для інших.
5. Чисельне моделювання. Цей етап передбачає розробку алгоритмів чисельного розв’язання задачі, підготовку комп’ютер них програм та безпосереднє виконання розрахунків. При цьому постають значні труднощі, зумовлені великою розмірністю економічних задач. Для великих складних об’єктів може знадобитися складання бази даних та відшукання засобів роботи з нею, а також методів добування даних, потрібних для розрахунків. У разі стандартних задач здійснюється вибір придатного пакета програм та системи управління базами даних (СУБД). Чисельне моделювання істотно доповнює результати аналітичного дослід ження.
6. Аналіз чисельних результатів та їх застосування. На цьому етапі передусім з’ясовується найважливіше питання щодо правильності й повноти результатів моделювання та можливості їх практичного використання, а також досліджуються можливі напрямки подальшого вдосконалення моделі.
8.базісні змінні в завданні лінійного програмування.
Ненульовий допустимий розв'язок ЗЛП називається базисним, якщо система векторів умов , що відповідають додатнимкомпонентам цього розв'язку, є лінійно незалежною. Нульовий допустимий розв'язок завжди будемо вважати базисним.
Згідно (1.17) маємо, що максимальне число додатних компонент базисного розв'язку ЗЛП дорівнює .
Означення 1.5. Базисний розв'язок називається невиродженим, якщо він містить рівно додатних компонент, та виродженим, якщо число додатних компонент менше .
Не обмежуючи загальності, припустимо, що у випадку невиродженого базисного розв'язку додатними є перші компонент, тобто
=( ,..., , …,0,…,0), >0, , (1.18)
причому вектори умов ,..., — лінійно незалежні. Будемо називати ці вектори базисом, що породжує базисний розв'язок , а утворену ними матрицю =( ,..., ) — базисною матрицею. Очевидно, що з точністю до порядку векторів базис у цьому випадку єдиний.
Аналогічно (1.18) у виродженому випадку маємо
= ( ,..., ,...,0,...,0), >0, , < , (1.19)
причому вектори умов ,..., — лінійно незалежні. У цьому випадку базисом, що породжує розв'язок (1.19), є будь-яка система т лінійно незалежних векторів умов, що включає вектори ,..., . Ця система векторів формує базисну матрицю. Очевидно, що у цьому випадку базис і, відповідно, базисна матриця не є єдиними.
Для обох розглянутих випадків змінні , що відповідають базисним векторам, будемо називати базисними, решту — небазисними. Зрозуміло, що у невиродженому випадку всі базисні змінні додатні, небазисні — нульові, а у виродженому випадку і серед базисних змінних є рівні нулю.
- 1Геометрична інтерпретація задачі лінійного програмування
- 2. Коефіцієнти прямих і повних матеріальних витрат
- 4.Економетрична модель
- 5.Метод Жорано –гауса
- 7.Етапи економіко-математичного моделювання
- 10.Опрне рішення задачі лінійного програмування.
- 14.Визначення сідлової точки.
- 3. Дайте економічну інтерпретацію методу потенціалів рішення транспортної задачі.
- 39 Описати економічний сенс цільової функції,обмежень в.Завданні про дієту.
- 42Описати економічний сенс цільової функції,обмежень в.Моделі виробництва.
- 43.Описати економічний сенс цільової функції,обмежень..Транспортного завдання.
- 44. Описати етапи зведення теорії ігор до завдання лінійного програмування.
- 45. Описати необхідні перетворення завдання лінійного програмування при рішенні її методом штучного базису.
- 46. Описати причини виникнення нелінійності в економічних завданнях і проілюструйте на прикладах.
- 48. Описати умови,що викликаюь необхідність застосування методу штучного базису.
- 50. Опишіть економіко-математичну модель транспортного завдання. Які методи рішення транспортних задач ви знаєте?
- 51.Загальна постановка завдання нелінійного програмування.Суть методу лагранжа рушення класичної оптимізації задачі.
- 8.4.1. Умовний та безумовний екстремуми функції
- У разі, якщо ,
- Метод множників Лагранжа
- 53.Перерахувати особливі випадки рішення задачі лінійного програмування графічним методом.
- 54.Поясніть економічний сенс коефіцієнта еластичності та коефіцієнта бета
- 55.Поясніть економічний сенс теорем подвійності,дайте економічну інтерпретацію властивостей подвійних оцінок.
- 57.Поясніть принципову схему міжгалузевого балансу ш розкрийте екон.Зміст її розділів.
- 58.Розкрийте основні поняття імітаційного моделювання і перерахуйте єтапи машинної імітації як експерементального методу вивчення економіки.
- 59.Розкрийте економічний сенс коефіцієнтів прямої і повної трудомісткості і дайте опис економіко-математичній моделі міжгалузевого балансу витрат праці.
- 60.Розкрийте економічну інтерпретацію коефіцієнтів парної і множинної кореляції,коефіцієнтів детермінації,сукупних коефіцієнтів детермінації. Парні коефіцієнти кореляції
- Множинні коефіцієнти кореляції
- 62. Сформулювати алгоритм рішення гри графічним методом.
- 65. Сформулювати економічний сенс попередніх перетворень при рішення задач угорським методом.
- 67.Сформулювати критерій оптимальності в процедурі симлексу і дати його екон.Інтерпретацію.
- 71. Сформулювати основні етапи алгоритму методу множників Лагранжа для завдань на умовний екстремум.
- 72. Сфомолювати основну ідею симплекс методу.
- 73.Сформулювати першу основну теорію повійності.
- 81.Геометрична інтерпретація задачі лінійного програмування
- 85. У чому суть завдань багокритеріаьної оптимізації?...
- 86. У чому суть методів мережевого планування і управління?
- 87. Принцип оптимальності
- 90.Завдання цілочисельного програмування..Приведіть приклади таких завдань і назвіть відомі методи їх рішення.
- 91. Що таке подвійне завдання в лп? Сформулюйте основні теореми подвійності.
- 1.Кожному обмеженню прямої задачі відповідає змінна двоїстої задачі. Кількість невідомих двоїстої задачі дорівнює кількості обмежень прямої задачі.
- 93. Які завдання екон аналізу розв’язуються на основі економетричних моделей регресії.
- 94. Які завдання розв’язуються на основі мережевих моделей? Розкрийте суть мережевого планування в умовах невизначеності.
- 95. Які найважливіші особливості соц.-екон сис-м як об’єктів моделювання?
- 96. Які основні етапи графічного методу рішення задач лінійного програмування?
- 97. Які особливості канонічної форми запису графічного методу рішення злп.