logo
1Геометрична інтерпретація задачі лінійного про

1.Кожному обмеженню прямої задачі відповідає змінна двоїстої задачі. Кількість невідомих двоїстої задачі дорівнює кількості обмежень прямої задачі.

2. Кожній змінній прямої задачі відповідає обмеження двоїстої задачі, причому кількість обмежень дорівнює кількості невідомих прямої задачі.

3. Якщо цільова функція прямої задачі задається на пошук найбільшого значення (max), то цільова функція двоїстої задачі — на визначення найменшого значення (min), і навпаки.

4. Коефіцієнтами при змінних в цільовій функції двоїстої задачі є вільні члени системи обмежень прямої задачі.

5. Правими частинами системи обмежень двоїстої задачі є коефіцієнти при змінних в цільовій функції прямої задачі.

6. Матриця що складається з коефіцієнтів при змінних у системі обмежень прямої задачі, і матриця коефіцієнтів в системі обмежень двоїстої задачі утворюються одна з одної транспонуванням, тобто заміною рядків стовпчиками, а стовпчиків — рядками.

Перша теорема двоїстості. Якщо одна з пари двоїстих задач має оптимальний план, то інша задача також має розв’язок, причому значення цільових функцій для оптимальних планів дорівнюють одне одному, тобто max Z = min F, і навпаки.

Друга теорема двоїстості. Якщо в результаті підстановки оптимального плану прямої задачі в систему обмежень цієї задачі і-те обмеження виконується як строга нерівність, то відповідний і-й компонент оптимального плану двоїстої задачі дорівнює нулю.

Якщо і-й компонент оптимального плану двоїстої задачі додат­ний, то відповідне і-те обмеження прямої задачі виконується для оптимального плану як рівняння.

Третя теорема двоїстості. Двоїста оцінка характеризує приріст цільової функції, який зумовлений малими змінами вільного члена відповідного обмеження.

Економічний зміст третьої теореми двоїстості полягає в тому, що відповідна додатна оцінка показує зростання значення цільової функції прямої задачі, якщо запас відповідного дефіцитного ресурсу збільшується на одну одиницю.