logo
вопросы и ответы менеджерам

Нейронные системы и сети

В то время как экспертные системы пытаются перенести опыт людей в компьютерную программу, нейронные сети пытаются создать значимые модели из большого количества данных. Нейронные сети могут распознавать модели, слишком неясные для людей, и адаптировать их при получении новой информации.

Ключевая характеристика нейронных сетей в том, что они обучаются. Программе нейронных сетей сначала дается набор данных, состоящих из многих переменных с большим количеством случаев, или исходов, в которых результаты известны. Программа анализирует данные и обрабатывает все корреляции, а затем выбирает набор переменных, которые строго соотнесены с частными известными результатами в виде начальной модели. Эта модель используется, чтобы попробовать предсказать результаты различных случаев, а предсказанные результаты сравниваются с известными результатами. Базируясь на этом сравнении, программа изменяет модель, регулируя параметры переменных или даже заменяя их. Этот процесс программа нейронных сетей повторяет много раз, стремясь улучшить прогнозирующую способность при отладке модели. Когда в этом итерационном подходе дальнейшее усовершенствование исчерпывается, программа готова делать предсказания для будущих случаев.

Как только станет доступным новое большое количество случаев, эти данные также вводятся в нейронную сеть, и модель еще раз корректируется. Нейронная сеть обучается относительно в относительно причинно-следственных моделей из этих дополнительных данных, и её прогнозирующая способность улучшается.