37. Расчёт основных характеристик индуктивного преобразователя.
Индуктивный преобразователь
1-инерц. груз
2-мембрана
3-упругий элемент
4-индукционный преобр-ль
5-измерительная цепь
, где R1, R2 – сопр. ст. и возд.
, где S – эффект-ая площ-дь мембраны, характер-ий мембрану как измер-ый преобр-ль. Р – входная величина (давление). F – сила (вых-я величина).
Входная величина стержневого упругого элемента:
, ε – относ. деформ-я (вых. величина упр-го элемента), S – пл-дь попер-го сечения упр-го элемнта, Е – модуль Юнга, F – сила (вход. величина)
Индуктивные преобразователи нашли широкое применение для преобразования пространственных физических величин (линейных или угловых перемещений) в электрический сигнал.
Принцип работы ИП основан на изменении самоиндукции катушки (L) при изменении магнитного сопротивления его магнитной цепи . Изменение магнитного сопротивления происходит в результате изменения параметров воздушного зазора под действием входного сигнала .
Схема простейшего ИП приведена на рис.1а и представляет собой катушку самоиндукции W с ферромагнитным сердечником 1 и якорем 2, отделенным от сердечника воздушным зазором . Магнитное сопротивление зазора R измениться в результате изменения величины воздушного зазора или его площади поперечного сечения S. Катушка соединена с нагрузкой Zн и источником переменного напряжения U .
Сердечник и якорь изготавливают из магнитомягких материалов с малыми потерями на гистерезис. Для уменьшения потерь на вихревые токи сердечник и якорь набирают из отдельных изолированных друг от друга пластин.
Рис. 1а
Потери на гистерезис и вихревые токи (потери в стали Рст) обуславливают комплексный характер магнитного сопротивления Zм .
ZМ=Rм +jXм, (1.2.1)
где Rм –активное сопротивление магнитной цепи;
Xм – реактивная составляющая магнитного сопротивления.
Если пренебречь потоками рассеяния и выпучиванием потока в воздушном зазоре , Rм будет складываться из активного магнитного сопротивления сердечника , якоря
(1.2.2)
и двух воздушных зазоров
(1.2.3)
где соответственно – LС , LЯ, – длина сердечника, якоря и воздушного зазора в м;
SC, SЯ, S - сечение сердечника , якоря и воздушного зазора в м2 ;
ас,ая –абсолютная магнитная проницаемость материала сердечника и якоря в гн/м;
0=410-7 гн/м – магнитная проницаемость вакуума.
Реактивная составляющая магнитного сопротивления определяется потерями в стали Рст и при отсутствии или слабом проявлении поверхностного эффекта может быть найдена по формуле
(1.2.4)
где =2f – круговая частота питающего напряжения;
– действующее значение магнитного потока.
Индуктивность (коэффициент самоиндукции) катушки также будет комплексной величиной
(1.2.5)
где – потокосцепление ;
J – ток катушки ;
- модуль комплексного магнитного сопротивления .
Тогда сопротивление катушки индуктивности
(1.2.6)
где rk – активное сопротивление обмотки катушки.
Из формулы (1.2.6) видно, что учет потерь в стали эквивалентен увеличению потерь в катушке из-за увеличения ее активного сопротивления.
Потери в стали определяются выбранным материалом , конструкцией магнитной цепи, его режимом работы и в ИП должны быть незначительными. Применение магнитопроводов из набора отдельных пластин, материалов магнитопровода с узкой петлей гистерезиса и выбор незначительных рабочих магнитных индукций (0,1÷0,3T) существенно снижают потери в стали .
Для упрощения анализа работы простейшего ИП пренебрежем потерями в стали, магнитным сопротивлением стали RСТ, так как при малых зазорах , Пусть имеем и , тогда получим, что эффективное значение тока в нагрузке
(1.2.7)
линейно зависит от перемещения якоря () ( пунктирная линия на рис.1б). Реальная ФП (сплошная линия на рис. 1б) отличается от полученной идеализированной в области малых и больших перемещений, которое обусловлено соответственно пренебрежением RCT и RH , rk .
Yandex.RTB R-A-252273-3
- Понятие “Прибор”, “Система”.
- 2. Структурные схемы приборов. Классификация приборов.
- 3. Режимы работ приборов.
- 4. Обобщённая структура иис. Аппаратные модули иис. Основные функции, выполняемые аппаратными модулями.
- 5. Классификация объектов проектирования и их параметры.
- 6. Основные этапы и задачи проектирования.
- 7. Структура тз и примеры параметров проектируемого устройства.
- 8. Схема процесса проектирования.
- 9. Математические модели и их классификация.
- 10. Классификация приборов и систем. Структурная схема системы автоматического контроля (сак).
- 11. Датчики физических величин. Структурная схема тензорезисторного датчика усилия.
- 12. Функции преобразования электронных измерительных цепей датчиков.
- 13. Нормирующие измерительные преобразователи разомкнутого типа.
- 14. Нип компенсационного типа (кип).
- 15. Масштабирующие преобразователи тока и напряжения на оу.
- 16.Способы вывода кодированной информации на цифровых индикаторах.
- 17. Газоразрядные индикаторы.
- 18. Электролюминесцентные индикаторы.
- 19. Жидкокристаллические индикаторы.
- 20. Полупроводниковые индикаторы.
- 21. Устройства регистрации информации.
- 22. Носители информации.
- 23. Кодоимпульсная запись на магнитной поверхности.
- 24. Показатели качества приборов и систем.
- 25. Квалиметрия. Системный подход как основа проектирования.
- 26. Программно-технические средства сапр.
- 27. Типовые компоненты сапр.
- 28. Пакеты моделирования pcad, microcap, micrologic/
- 29. Принципы агрегатирования при проектировании приборов и систем.
- 30. Выбор интерфейсов измерительных систем. Структурные схемы интерфейсов.
- 31. Приборный интерфейс.
- 32. Проектирование программного обеспечения (по) измерительных систем (ис).
- 33. Нормируемые метрологические характеристики приборов и систем.
- 34. Технические средства метрологических поверок.
- 35. Сертификация приборов и систем.
- 36. Физические величины и поля. Примеры преобразования физических величин и полей.
- 37. Расчёт основных характеристик индуктивного преобразователя.
- 38. Влияние внешней среды на параметры преобразователей.
- 39. Методы повышения точности.
- 41. Основные требования к ацп и цап.
- Характеристики статической точности
- Динамические характеристики цап и ацп
- Условия применения цап и ацп
- Содержание.