9. Математические модели и их классификация.
Математическая модель – совокупность математических объектов (чисел, векторов, множеств) и отношений между ними, которая отображает некоторые свойства проектируемого технического объекта. Например, важный класс задач – системы уравнений.
К математическим моделям предъявляются требования: точности, экономичности, универсальности.
Точность математической модели – свойства, отражающие степень совпадения, предсказанных с помощью математической модели значений параметров объекта, с истинными значениями параметров.
Количественная оценка точности модели в большинстве случаев вызывает затруднение по причинам:
Реальные объекты (а следовательно и их модели) характеризуются не одним, а несколькими параметрами. Отсюда вытекает векторный характер оценки точности и необходимость сведения векторной оценки и скалярной для возможности сопоставления моделей друг с другом.
Математические модели составляются для многократного использования при анализе разных вариантов объекта. Поскольку характер появления тех или иных свойств объекта зависит от особенностей взаимодействия со средой, то и показатели точности отображения зависит от конкретных условий функционирования объекта. В результате этого оценка точности неоднозначна.
Истинные значения параметров объекта обычно отождествляют с экспериментально-полученными. Однако погрешности эксперимента во многих случаях соизмеримы с погрешностями объекта.
Сведение векторной оценки точности к скалярной осуществляется обычно на основе какой-либо нормы вектора.
Экономичность математической модели оценивается прежде всего затратами машинного времени: ТМ.
Степень универсальности математической модели определяется их применимостью анализу многочисленной группы однотипных объектов, а также анализу в одном или многих режимах функционирования.
По характеру отображаемых свойств проектируемого объекта модели делят на функциональные и структурные.
Функциональные модели отображают процессы функционирования объекта. Эти модели чаще всего имеют форму уравнений. В зависимости от физической природы отображаемых явлений среди функциональных моделей различают: модели тепловые, электрические, оптические, электромеханические и другие.
Структурные модели отображают только структурные свойства объекта. Эти модели могут иметь форму матриц, графов, список векторов, взаимное расположение элементов в пространстве, наличие связей между ними в виде каналов и т.п.
Структурные модели используют в случаях, когда задачи структурного синтеза удаётся ставить и решать, абстрагируясь от физических особенностей в объекте. Например, при оформлении технической документации.
Yandex.RTB R-A-252273-3
- Понятие “Прибор”, “Система”.
- 2. Структурные схемы приборов. Классификация приборов.
- 3. Режимы работ приборов.
- 4. Обобщённая структура иис. Аппаратные модули иис. Основные функции, выполняемые аппаратными модулями.
- 5. Классификация объектов проектирования и их параметры.
- 6. Основные этапы и задачи проектирования.
- 7. Структура тз и примеры параметров проектируемого устройства.
- 8. Схема процесса проектирования.
- 9. Математические модели и их классификация.
- 10. Классификация приборов и систем. Структурная схема системы автоматического контроля (сак).
- 11. Датчики физических величин. Структурная схема тензорезисторного датчика усилия.
- 12. Функции преобразования электронных измерительных цепей датчиков.
- 13. Нормирующие измерительные преобразователи разомкнутого типа.
- 14. Нип компенсационного типа (кип).
- 15. Масштабирующие преобразователи тока и напряжения на оу.
- 16.Способы вывода кодированной информации на цифровых индикаторах.
- 17. Газоразрядные индикаторы.
- 18. Электролюминесцентные индикаторы.
- 19. Жидкокристаллические индикаторы.
- 20. Полупроводниковые индикаторы.
- 21. Устройства регистрации информации.
- 22. Носители информации.
- 23. Кодоимпульсная запись на магнитной поверхности.
- 24. Показатели качества приборов и систем.
- 25. Квалиметрия. Системный подход как основа проектирования.
- 26. Программно-технические средства сапр.
- 27. Типовые компоненты сапр.
- 28. Пакеты моделирования pcad, microcap, micrologic/
- 29. Принципы агрегатирования при проектировании приборов и систем.
- 30. Выбор интерфейсов измерительных систем. Структурные схемы интерфейсов.
- 31. Приборный интерфейс.
- 32. Проектирование программного обеспечения (по) измерительных систем (ис).
- 33. Нормируемые метрологические характеристики приборов и систем.
- 34. Технические средства метрологических поверок.
- 35. Сертификация приборов и систем.
- 36. Физические величины и поля. Примеры преобразования физических величин и полей.
- 37. Расчёт основных характеристик индуктивного преобразователя.
- 38. Влияние внешней среды на параметры преобразователей.
- 39. Методы повышения точности.
- 41. Основные требования к ацп и цап.
- Характеристики статической точности
- Динамические характеристики цап и ацп
- Условия применения цап и ацп
- Содержание.