2.4.3 Построение кучи
Пусть дан массив A[1..n], который требуется превратить в кучу, переставив его элементы. Для этого можно использовать процедуру Heapify, применяя её по очереди ко всем вершинам, начиная с нижних. Поскольку вершины с номерами ,...,n являются листьями, поддеревья с этими вершинами удовлетворяют основному свойству. Для каждой из оставшихся вершин, в порядке убывания индексов, мы применяем процедуру Heapify. Порядок обработки вершин гарантирует, что каждый раз условия вызова процедуры (выполнение основного свойства для поддеревьев) будут выполнены.
Листинг 2.5 – Процедура построения кучи
Ясно, что время работы процедуры Build-Heap не превышает O(nlog n). Действительно, процедура Heapify вызывается О(п) раз, а каждое её выполнение требует времени O(log n). Однако, эту оценку можно улучшить.
Итак, куча строится за линейное время, восстановление основного свойства кучи происходит за время, пропорциональное высоте дерева, т.е. log n, всего же сортируется
n - элементов, поэтому общее время есть O(nlog n).
- Министерство образования Российской Федерации
- Содержание
- 1.2 Скорость роста функций
- 1.3 Анализ алгоритмов; время работы в лучшем, худшем случаях и в среднем
- 1.4 Типы данных, структуры данных и абстрактные типы данных
- 1.5 Динамические множества
- 2 Алгоритмы сортировок
- 2.1 Понятие внутренней и внешней сортировки
- 2.2 Сортировка вставками
- 2.3 Сортировка слиянием
- 2.3.1 Описание алгоритма
- 2.3.2 Анализ времени работы алгоритмов «разделяй и властвуй»
- 2.3.2 Анализ времени работы сортировки слиянием через рекуррентное соотношение
- 2.3.3 Анализ времени работы сортировки слиянием через геометрическую интерпретацию
- 2.4 Пирамидальная сортировка
- 2.4.1 Введение в алгоритм
- 2.4.2 Сохранение основного свойства кучи
- 2.4.3 Построение кучи
- 2.5 Быстрая сортировка
- 2.5.1 Введение в алгоритм
- 2.5.2 Описание
- 2.5.3 Разбиение массива
- 2.5.4 Особенности работы быстрой сортировки
- 2.6 Особенности реализации алгоритмов сортировки; сортировка за линейное время
- 2.6.1 Введение
- 2.6.2 Разрешающее дерево сортировки сравнениями
- 2.7 Цифровая сортировка
- 2.8 Сортировка вычерпыванием
- 2.8.1 Описание алгоритма
- 2.8.2 Вероятностный анализ времени работы сортировки вычерпыванием
- 2.8.3 Анализ времени работы сортировки вычерпыванием через геометрическую интерпретацию
- 2.9 Сортировка подсчетом
- 2.9.1 Описание алгоритма
- 2.9.2 Анализ времени работы
- 3 Элементарные и нелинейные структуры данных
- 3.1 Элементарные структуры: список, стек, очередь, дек
- 3.1.1 Список Линейный однонаправленный список
- Линейный двунаправленный список
- Двунаправленный список с фиктивными элементами
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- 3.1.2 Стек
- 3.1.3 Очередь
- 3.1.3 Дек
- 3.2 Нелинейные структуры данных
- 3.2.1 Представление корневых деревьев в эвм
- Обходы деревьев
- 3.2.2 Двоичные деревья Спецификация двоичных деревьев
- Реализация
- Обходы двоичных деревьев
- 3.2.3 Двоичные деревья поиска Основные операции
- Минимум и максимум
- Следующий и предыдущий элементы
- Добавление и удаление
- Случайные деревья поиска
- Оптимальные деревья поиска
- 4 Хеширование
- 4.1 Введение
- 4.2 Прямая адресация; таблицы с прямой адресацией
- 4.3 Хеш – таблицы; возникновение коллизий и их разрешение
- Разрешение коллизий с помощью цепочек
- Анализ хеширования с цепочками
- 4.4 Способы построения хеш – функций Выбор хорошей хеш-функции
- Ключи как натуральные числа
- Деление с остатком
- Умножение
- Универсальное хеширование
- 4.5 Открытая адресация; способы вычисления последовательности испробованных мест: линейная последовательность проб, квадратичная последовательность проб, двойное хеширование
- Линейная последовательность проб
- 1 / (1 – )
- 5 Основные принципы разработки алгоритмов
- 5.1 Введение в теорию графов
- 5.1.1 Графы
- 5.1.2 Представление графов
- 5.2 Алгоритмы на графах: поиск в ширину, поиск в глубину
- 5.2.1 Поиск в ширину (волновой алгоритм)
- 5.2.2 Анализ поиска в ширину
- 5.2.3 Деревья поиска в ширину
- 5.2.4 Поиск в глубину
- 5.2.5 Анализ поиска в глубину
- 5.2.6 Свойства поиска в глубину
- 5.2.7 Классификация рёбер
- 5.3 Топологическая сортировка, задача о разбиении графа на сильно связанные компоненты
- 5.3.1 Топологическая сортировка
- 5.3.2 Сильно связные компоненты
- 5.4 Алгоритм построения минимального остовного дерева
- 5.4.1 Остовные деревья минимальной стоимости
- 5.4.2 Построение минимального покрывающего дерева
- 5.4.3 Алгоритмы Крускала и Пpимa
- 5.4.4 Алгоритм Крускала
- 5.4.5 Алгоритм Прима
- 5.5 Задача нахождения кратчайших путей на графах; алгоритм Флойда; алгоритм Дейкстры
- 5.5.1 Нахождение кратчайшего пути
- 5.5.2 Алгоритм Дейкстры
- 5.5.3 Алгоритм Флойда
- 5.6 Поиск с возвратом
- 5.6.1 Введение
- 5.6.2 Переборные алгоритмы
- 5.6.3 Метод ветвей и границ
- 5.6.4 Метод альфа-бета отсечения
- 5.6.5 Локальные и глобальные оптимальные решения
- 5.7 Метод декомпозиции ( «Разделяй и властвуй»)
- 5.7.1 «Ханойские башни»
- 5.8 Жадные алгоритмы и динамическое программирование
- 5.8.1 Задача о выборе заявок
- 5.8.2 Дискретная задача о рюкзаке
- 5.8.3 Непрерывная задача о рюкзаке
- 5.8.4 Числа Фибоначчи
- 5.8.5 Задача триангуляции многоугольника
- 5.8.6 Дп, жадный алгоритм или что-то другое?