5.4.1 Остовные деревья минимальной стоимости
Пусть даны n контактов на печатной плате, которые мы хотим электрически со- единить. Для этого достаточно использовать n 1 проводов, каждый из которых соединяет два контакта. При этом мы обычно стремимся сделать суммарную длину проводов как можно меньше.
Упрощая ситуацию, можно сформулировать задачу так. Пусть имеется связ- ный неориентированный граф G = (V, Е), в котором V множество контактов, а Е множество их возможных попарных соединений. Для каждого ребра гра- фа (и, v) задан неотрицательный вес w(и, v) (длина провода, необходимого для соединения и и v). Задача состоит в нахождении подмножества Т Е, связы- вающего все вершины, для которого суммарный вес
минимален. Такое подмножество Т можно считать деревом (в любом цикле один из проводов можно удалить, не нарушая связности). Связный подграф графа G, являющийся деревом и содержащий все его вершины, называют покрывающим деревом (spanning tree) этого графа. (Иногда используют термин «остовное дерево», или, короче, «остов».)
В этом разделе мы рассматриваем задачу о минимальном покрывающем дереве (minimum-spanning-tree problem). Здесь слово «минимальное» означает «имеющее минимально возможный вес». (Заметим в скобках, что если мы рассматриваем только деревья, то условие неотрицательности весов можно отбросить, посколь- ку во всех покрывающих деревьях одинаковое число рёбер и все веса можно изменить на одну и ту же константу, сделав их положительными.) На рисунке 5.6 приведён пример связного графа и его минимального остова.
Возвращаясь к примеру с проводниками на печатной плате, объясним, по- чему задача о минимальном дереве является упрощением реальной ситуации. В самом деле, если соединяемые контакты находятся в вершинах единичного квадрата, разрешается соединять его любые вершины и вес соединения равен его длине, то минимальное покрывающее дерево будет состоять из трёх сторон квадрата. Между тем все его четыре вершины можно электрически соединить двумя пересекающимися диагоналями (суммарная длина < 3) и это ещё не предел (можно ввести две промежуточные точки, в которых проводники сходятся под углом 1200).
В этом разделе мы рассмотрим два способа решения задачи о минимальном покрывающем дереве: алгоритмы Крускала и Прима. Каждый их них легко реализовать с временем работы O(Е log V), используя обычные двоичные ку- чи. Применив фибоначчиевы кучи, можно сократить время работы алгоритма Прима до O(E + V log V) (выигрыш существен, если |V| много меньше |Е|).
Оба алгоритма (Крускала и Прима) следуют «жадной» стратегии: на каждом шаге выбирается «локально наилучший» вариант. Не для всех задач такой выбор приведёт к оптимальному решению, но для задачи о покрывающем дереве это так.
Рисунок 5.6 – Связный граф и его минимальный остов
На рис. 5.6 изображено минимальное покрывающее дерево. На каждом ребре графа указан вес. Выделены рёбра минимального покрывающего дерева (суммарный вес 37). Такое дерево не единственно: заменяя ребро (b, c) ребром (а, h), получаем другое дерево того же веса 37.
- Министерство образования Российской Федерации
- Содержание
- 1.2 Скорость роста функций
- 1.3 Анализ алгоритмов; время работы в лучшем, худшем случаях и в среднем
- 1.4 Типы данных, структуры данных и абстрактные типы данных
- 1.5 Динамические множества
- 2 Алгоритмы сортировок
- 2.1 Понятие внутренней и внешней сортировки
- 2.2 Сортировка вставками
- 2.3 Сортировка слиянием
- 2.3.1 Описание алгоритма
- 2.3.2 Анализ времени работы алгоритмов «разделяй и властвуй»
- 2.3.2 Анализ времени работы сортировки слиянием через рекуррентное соотношение
- 2.3.3 Анализ времени работы сортировки слиянием через геометрическую интерпретацию
- 2.4 Пирамидальная сортировка
- 2.4.1 Введение в алгоритм
- 2.4.2 Сохранение основного свойства кучи
- 2.4.3 Построение кучи
- 2.5 Быстрая сортировка
- 2.5.1 Введение в алгоритм
- 2.5.2 Описание
- 2.5.3 Разбиение массива
- 2.5.4 Особенности работы быстрой сортировки
- 2.6 Особенности реализации алгоритмов сортировки; сортировка за линейное время
- 2.6.1 Введение
- 2.6.2 Разрешающее дерево сортировки сравнениями
- 2.7 Цифровая сортировка
- 2.8 Сортировка вычерпыванием
- 2.8.1 Описание алгоритма
- 2.8.2 Вероятностный анализ времени работы сортировки вычерпыванием
- 2.8.3 Анализ времени работы сортировки вычерпыванием через геометрическую интерпретацию
- 2.9 Сортировка подсчетом
- 2.9.1 Описание алгоритма
- 2.9.2 Анализ времени работы
- 3 Элементарные и нелинейные структуры данных
- 3.1 Элементарные структуры: список, стек, очередь, дек
- 3.1.1 Список Линейный однонаправленный список
- Линейный двунаправленный список
- Двунаправленный список с фиктивными элементами
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- 3.1.2 Стек
- 3.1.3 Очередь
- 3.1.3 Дек
- 3.2 Нелинейные структуры данных
- 3.2.1 Представление корневых деревьев в эвм
- Обходы деревьев
- 3.2.2 Двоичные деревья Спецификация двоичных деревьев
- Реализация
- Обходы двоичных деревьев
- 3.2.3 Двоичные деревья поиска Основные операции
- Минимум и максимум
- Следующий и предыдущий элементы
- Добавление и удаление
- Случайные деревья поиска
- Оптимальные деревья поиска
- 4 Хеширование
- 4.1 Введение
- 4.2 Прямая адресация; таблицы с прямой адресацией
- 4.3 Хеш – таблицы; возникновение коллизий и их разрешение
- Разрешение коллизий с помощью цепочек
- Анализ хеширования с цепочками
- 4.4 Способы построения хеш – функций Выбор хорошей хеш-функции
- Ключи как натуральные числа
- Деление с остатком
- Умножение
- Универсальное хеширование
- 4.5 Открытая адресация; способы вычисления последовательности испробованных мест: линейная последовательность проб, квадратичная последовательность проб, двойное хеширование
- Линейная последовательность проб
- 1 / (1 – )
- 5 Основные принципы разработки алгоритмов
- 5.1 Введение в теорию графов
- 5.1.1 Графы
- 5.1.2 Представление графов
- 5.2 Алгоритмы на графах: поиск в ширину, поиск в глубину
- 5.2.1 Поиск в ширину (волновой алгоритм)
- 5.2.2 Анализ поиска в ширину
- 5.2.3 Деревья поиска в ширину
- 5.2.4 Поиск в глубину
- 5.2.5 Анализ поиска в глубину
- 5.2.6 Свойства поиска в глубину
- 5.2.7 Классификация рёбер
- 5.3 Топологическая сортировка, задача о разбиении графа на сильно связанные компоненты
- 5.3.1 Топологическая сортировка
- 5.3.2 Сильно связные компоненты
- 5.4 Алгоритм построения минимального остовного дерева
- 5.4.1 Остовные деревья минимальной стоимости
- 5.4.2 Построение минимального покрывающего дерева
- 5.4.3 Алгоритмы Крускала и Пpимa
- 5.4.4 Алгоритм Крускала
- 5.4.5 Алгоритм Прима
- 5.5 Задача нахождения кратчайших путей на графах; алгоритм Флойда; алгоритм Дейкстры
- 5.5.1 Нахождение кратчайшего пути
- 5.5.2 Алгоритм Дейкстры
- 5.5.3 Алгоритм Флойда
- 5.6 Поиск с возвратом
- 5.6.1 Введение
- 5.6.2 Переборные алгоритмы
- 5.6.3 Метод ветвей и границ
- 5.6.4 Метод альфа-бета отсечения
- 5.6.5 Локальные и глобальные оптимальные решения
- 5.7 Метод декомпозиции ( «Разделяй и властвуй»)
- 5.7.1 «Ханойские башни»
- 5.8 Жадные алгоритмы и динамическое программирование
- 5.8.1 Задача о выборе заявок
- 5.8.2 Дискретная задача о рюкзаке
- 5.8.3 Непрерывная задача о рюкзаке
- 5.8.4 Числа Фибоначчи
- 5.8.5 Задача триангуляции многоугольника
- 5.8.6 Дп, жадный алгоритм или что-то другое?