3.2.3 Двоичные деревья поиска Основные операции
Обычные деревья не дают выигрыша при хранении множества значений. При поиске элемента все равно необходимо просмотреть все дерево. Однако можно организовать хранение элементов в дереве так, чтобы при поиске элемента достаточно было просмотреть лишь часть дерева. Для этого надо ввести следующее требование упорядоченности дерева:
Двоичное дерево упорядочено, если для любой вершины x справедливо такое свойство: все элементы, хранимые в левом поддереве, меньше элемента, хранимого в x, а все элементы, хранимые в правом поддереве, больше элемента, хранимого в x.
Важное свойство упорядоченного дерева: все элементы его различны. Если в дереве встречаются одинаковые элементы, то такое дерево является частично упорядоченным.
В дальнейшем будет идти речь только о двоичных упорядоченных деревьях, слово «упорядоченный» будет опускаться.
Деревья поиска (search trees) позволяют выполнять следующие операции с дина- мическими множествами: Search (поиск), Minimum (минимум), Maximum (мак- симум), Predecessor (предыдущий), Successor (следующий), Insert (вста- вить) и Delete (удалить). Таким образом, дерево поиска может быть исполь- зовано и как словарь, и как очередь с приоритетами.
Время выполнения основных операций пропорционально высоте дерева. Если двоичное дерево «плотно заполнено» (все его уровни имеют максимально возмож- ное число вершин), то его высота (и тем самым время выполнения операций) пропорциональна логарифму числа вершин. Напротив, если дерево представля- ет собой линейную цепочку из n вершин, это время вырастает до .
Конечно, возникающие на практике двоичные деревья поиска могут быть далеки от случайных. Однако, приняв специальные меры по балансировке де- ревьев, можно гарантировать, что высота дерева с n вершинами будет O(log n).
Реализация операций будет рассматриваться для двоичных деревьев, представленных как динамическая структура.
Реализацию этих операций приведем в виде соответствующих процедур.
Поиск
Алгоритм поиска можно записать в рекурсивном виде. Если искомое значение Item меньше Tree^.Data, то поиск продолжается в левом поддереве, если равен – поиск считается успешным, если больше – поиск продолжается в правом поддереве; поиск считается неудачным, если достигли пустого поддерева, а элемент найден не был.
function TreeSearch(Item: TypeElement; Tree: PTree): boolean;
{Поиск вершины дерева, содержащую значение Item}
var
Current: PTree;
begin
TreeSearch := False;
if Tree <> nil then begin {Дерево не пустое}
Current := Tree;
if Current^.Data = Item then {Вершина найдена}
TreeSearch := True
else
if Current^.Data > Item then {Ищем в левом поддереве}
TreeSearch := TreeSearch(Item, Current^.Left)
else {Ищем в правом поддереве}
TreeSearch := TreeSearch(Item, Current^.Right);
end;
end;
Листинг 3.15 – Процедура поиска в двоичном дереве на языке Pascal
Листинг 3.24 – Рекурсивная процедура поиска в двоичном дереве поиска
Можно написать аналогичную нерекурсивную функцию. Она позволит избежать избыточного хранения информации. Каждый рекурсивный вызов размещает в стеке локальные переменные Item и Tree, а также адрес точки возврата из подпрограммы. В нерекурсивном варианте можно обойтись одной переменной Item и одной переменной Tree.
Листинг 3.25 – Нерекурсивная (итеративная) процедура поиска в двоичном дереве поиска
- Министерство образования Российской Федерации
- Содержание
- 1.2 Скорость роста функций
- 1.3 Анализ алгоритмов; время работы в лучшем, худшем случаях и в среднем
- 1.4 Типы данных, структуры данных и абстрактные типы данных
- 1.5 Динамические множества
- 2 Алгоритмы сортировок
- 2.1 Понятие внутренней и внешней сортировки
- 2.2 Сортировка вставками
- 2.3 Сортировка слиянием
- 2.3.1 Описание алгоритма
- 2.3.2 Анализ времени работы алгоритмов «разделяй и властвуй»
- 2.3.2 Анализ времени работы сортировки слиянием через рекуррентное соотношение
- 2.3.3 Анализ времени работы сортировки слиянием через геометрическую интерпретацию
- 2.4 Пирамидальная сортировка
- 2.4.1 Введение в алгоритм
- 2.4.2 Сохранение основного свойства кучи
- 2.4.3 Построение кучи
- 2.5 Быстрая сортировка
- 2.5.1 Введение в алгоритм
- 2.5.2 Описание
- 2.5.3 Разбиение массива
- 2.5.4 Особенности работы быстрой сортировки
- 2.6 Особенности реализации алгоритмов сортировки; сортировка за линейное время
- 2.6.1 Введение
- 2.6.2 Разрешающее дерево сортировки сравнениями
- 2.7 Цифровая сортировка
- 2.8 Сортировка вычерпыванием
- 2.8.1 Описание алгоритма
- 2.8.2 Вероятностный анализ времени работы сортировки вычерпыванием
- 2.8.3 Анализ времени работы сортировки вычерпыванием через геометрическую интерпретацию
- 2.9 Сортировка подсчетом
- 2.9.1 Описание алгоритма
- 2.9.2 Анализ времени работы
- 3 Элементарные и нелинейные структуры данных
- 3.1 Элементарные структуры: список, стек, очередь, дек
- 3.1.1 Список Линейный однонаправленный список
- Линейный двунаправленный список
- Двунаправленный список с фиктивными элементами
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- 3.1.2 Стек
- 3.1.3 Очередь
- 3.1.3 Дек
- 3.2 Нелинейные структуры данных
- 3.2.1 Представление корневых деревьев в эвм
- Обходы деревьев
- 3.2.2 Двоичные деревья Спецификация двоичных деревьев
- Реализация
- Обходы двоичных деревьев
- 3.2.3 Двоичные деревья поиска Основные операции
- Минимум и максимум
- Следующий и предыдущий элементы
- Добавление и удаление
- Случайные деревья поиска
- Оптимальные деревья поиска
- 4 Хеширование
- 4.1 Введение
- 4.2 Прямая адресация; таблицы с прямой адресацией
- 4.3 Хеш – таблицы; возникновение коллизий и их разрешение
- Разрешение коллизий с помощью цепочек
- Анализ хеширования с цепочками
- 4.4 Способы построения хеш – функций Выбор хорошей хеш-функции
- Ключи как натуральные числа
- Деление с остатком
- Умножение
- Универсальное хеширование
- 4.5 Открытая адресация; способы вычисления последовательности испробованных мест: линейная последовательность проб, квадратичная последовательность проб, двойное хеширование
- Линейная последовательность проб
- 1 / (1 – )
- 5 Основные принципы разработки алгоритмов
- 5.1 Введение в теорию графов
- 5.1.1 Графы
- 5.1.2 Представление графов
- 5.2 Алгоритмы на графах: поиск в ширину, поиск в глубину
- 5.2.1 Поиск в ширину (волновой алгоритм)
- 5.2.2 Анализ поиска в ширину
- 5.2.3 Деревья поиска в ширину
- 5.2.4 Поиск в глубину
- 5.2.5 Анализ поиска в глубину
- 5.2.6 Свойства поиска в глубину
- 5.2.7 Классификация рёбер
- 5.3 Топологическая сортировка, задача о разбиении графа на сильно связанные компоненты
- 5.3.1 Топологическая сортировка
- 5.3.2 Сильно связные компоненты
- 5.4 Алгоритм построения минимального остовного дерева
- 5.4.1 Остовные деревья минимальной стоимости
- 5.4.2 Построение минимального покрывающего дерева
- 5.4.3 Алгоритмы Крускала и Пpимa
- 5.4.4 Алгоритм Крускала
- 5.4.5 Алгоритм Прима
- 5.5 Задача нахождения кратчайших путей на графах; алгоритм Флойда; алгоритм Дейкстры
- 5.5.1 Нахождение кратчайшего пути
- 5.5.2 Алгоритм Дейкстры
- 5.5.3 Алгоритм Флойда
- 5.6 Поиск с возвратом
- 5.6.1 Введение
- 5.6.2 Переборные алгоритмы
- 5.6.3 Метод ветвей и границ
- 5.6.4 Метод альфа-бета отсечения
- 5.6.5 Локальные и глобальные оптимальные решения
- 5.7 Метод декомпозиции ( «Разделяй и властвуй»)
- 5.7.1 «Ханойские башни»
- 5.8 Жадные алгоритмы и динамическое программирование
- 5.8.1 Задача о выборе заявок
- 5.8.2 Дискретная задача о рюкзаке
- 5.8.3 Непрерывная задача о рюкзаке
- 5.8.4 Числа Фибоначчи
- 5.8.5 Задача триангуляции многоугольника
- 5.8.6 Дп, жадный алгоритм или что-то другое?